
Effect of software evolution on software metrics: An open 
source case study 

Kalpana Johari 
Centre for Development of Advanced 

Computing 
CDAC, NOIDA 
NOIDA, India 

kalpanajohari@cdacnoida.in 

 
 

Arvinder Kaur 
Guru Gobind Singh Indraprastha University 

Sector-16 Dwarka 
Delhi, India 

arvinderkaurtakkar@yahoo.com 
 
 

ABSTRACT 
Software needs to evolve in order to be used for a longer period. The 
changes corresponding to corrective, preventive, adaptive and 
perfective maintenance leads to software evolution. In this paper we are 
presenting the results of study conducted on 13 versions of JHot Draw 
and 16 versions of Rhino released over the period of 10 years. We 
measured Object Oriented Metrics and studied the changes in the 
measured values over different releases of two medium sized software 
developed using Java. We also investigated the applicability of 
Lehman’s Law of Software Evolution on Object Oriented Software 
Systems using different measures. We found that Lehman’s laws related 
with increasing complexity and continuous growth are supported by the 
data and computed metrics measure.   

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Software Evolution 

General Terms 
Verification. 

Keywords 
Software evolution, laws of software evolution, software metrics, 
revisions, versions, software complexity, open source. 

1. INTRODUCTION 
Software is not prone to wear and tear but still it may become useless if 
not revised in response to ever changing user requirements. Software 
needs to evolve in order to be used for longer period. Lehman et al has 
done extensive research on evolution of large and long lived software 
[1]. Lehman’s laws of software evolution, based on the empirical study, 
indicate that continuous change and growth is required for keeping the 
software long-lived. The laws also suggest that over the period, due to 
changes and growth, software system becomes complex and it becomes 
more and more difficult to add new functionalities to it. It has been 
more than two decades since laws being proposed but still there are very 
few empirical studies to support the applicability of laws to software 
systems and sub systems more so in the case of object oriented software 
system. 

The availability of source code and change details of open source 
software has provided a support to the study of software evolution. The 
work presented in this paper is based on the study of several versions of 
two open source software i.e. JhotDraw and Rhino. Both the software 
used for study have been developed using Java. The main objective of 
the study is to examine the applicability of Lehman’s laws to object 
oriented software system. We have computed the object oriented 
metrics, proposed by Chidamber and Kemerer[2] , for the two software. 
The computed metrics value for different releases has been used as the 
basis for examining the laws of software evolution. 

The paper is organized as follows: Section 2 provides the background, 
giving brief interpretation of Laws of software evolution and object 
oriented metrics. Section 3 contains the brief introduction to the two 
case studies. Section 4 explains the approach and data representation. 
Section 5 presents the analysis and interpretation of laws with respect to 

object oriented software. Section 6 presents the related work, followed 
by conclusion and future work. 

2. BACKGRUOND 
This section consists of two sub section. The first one gives a brief 
interpretation of Lehman’s Laws of Software evolution and the second 
one presents the meaning of object oriented metrics used in the study 

2.1 Lehman’s law of Software Evolution[1] 
x Continuing Change (1974):  E-type systems should 

continuously be changed in order to be used for longer 
period. The required change may be called for in response to 
change in environment, as a bug fix exercise or as a 
preventive maintenance activity or any other activity leading 
to change. 

x Increasing Complexity (1974):  The complexity of an E-type 
system increases unless some preventive maintenance is 
done to control it. Increase in complexity may arise due to 
number of changes or due to addition of more functionalities 
leading to more interaction. 

x Self Regulation (1974):  Evolution process of E-type system 
is self regulatory. This means that growth rate of is regulated 
by the maintenance process.  There is a balance between 
what is desired to be changed and what can actually be 
achieved. In order to have a smooth evolution process, the 
limitations on growth rate should be accepted. 

x Conservation of Organizational Stability (invariant work 
rate) (1980): Evolution process of software conserves the 
organizational stability. The work rate of an organization 
evolving a large software tends to remain constant. This 
means it is hard to change the staff who has been working on 
evolving software. The average global effective rate in 
evolving software tends to remain constant over product 
lifetime. 

x Conservation of Familiarity (1980): The familiarity with 
evolving E-type software is conserved. A huge change that 
might cause lack of familiarity of staff members involved 
with the evolving software is avoided. For small changes the 
familiarity of software is easily achieved by the personnel 
involved with the software.  Hence the average incremental 
growth remains constant as the software evolves. 

x Continuing Growth (1980): The functional content of E-type 
systems must be continually enhanced in response to user 
feature request in order to maintain user satisfaction over its 
life period. 

x Declining Quality (1996): The Evolution process causes 
decline in the quality of evolving software. 

ACM SIGSOFT Software Engineering Notes Page 1 September 2011 Volume 36 Number 5

DOI: 10.1145/2020976.2020987 http://doi.acm.org/10.1145/2020976.2020987



2.2 Metrics used in the study 
We have applied package level, class level and method level metrics on 
open source software. This section presents the definition metrics used 
in the study. Although major emphasis has been on object oriented 
metrics as proposed by Chidamber and Kemerer [2], we have also 
considered Line of Code (LOC), number of Classes, number of 
packages, number of Method (NOM) in a class, number of attributes in 
a class, method line of code (MLOC) as variant of size metrics. For 
measuring the complexity at different level, we have considered afferent 
and efferent coupling at package level, coupling between object(CBO) 
and response for class(RFC) at class level and McCabe’s cyclomatic 
complexity[8] at method level. 

x CBO - Coupling between object classes 
The CBO metric for a class is the count of all those classes with 
which the given class is coupled. Two classes may be coupled due 
to method call, arguments, return type, field access, inheritance and 
exception. 

x LCOM - Lack of cohesion in methods 
A LCOM metric of a class is the count of set of methods in a class 
that are disjoint with respect members of a class being accessed by 
them. The original definition of this metric as presented in [2] 
considers all pairs of a class's methods. 

x NOC - Number of Children 
NOC metrics measure the number of direct descendents of a class. 

x RFC- Response for a Class 
The RFC metrics of a class is the measure of number of methods 
that can be invoked in response to a message received by an object 
of the class. Ideally RFC should measure the transitive closure of 
the call graph for each method.  

x WMC - Weighted methods per class 
WMC metric for a class is the sum of complexities of its methods. 
The complexity of an individual method can be measured as 
cyclomatic complexity or simply we can assign 1 as the complexity 
value .  We have used cyclomatic complexity variant of WMC 
(WMC using CC).   

x LOC-Line of code 
LOC include all the lines of source code, except blank and 
comments 

x NOM:- Number of Methods 
NOM for a class defines the number of method defined in the class. 
The count of static method is defined using NSM and the number of 
overridden methods is defined using NORM. 

x NOA:-Number of Attributes 
NOA for a class is the number of attributes in that class. The count 
of static attributes of a class is represented as NSA 

x NPM: Number of public methods 
NPM of a class is the number of public methods in a class. The 
count is included in number of methods. 

3. CASE STUDIES 
This section presents a brief introduction to the software used in the 
study namely JhotDraw and Rhino. According to cook the software can 
be categorized as E-type [4][11]. The software has been implemented in 
Java and are open source. All the data related to revisions is available 
on internet. The choice of software is mainly guided by the limitations 
of metrics measuring tools and the availability of revision details and 
source code. 

3.1 Case study 1: JhotDraw[9] 
JhotDraw is a framework for 2-dimensional drawing editors and for 
document-oriented applications. It is implemented in java. It is an 
adaption of HotDraw. Since the registration of Jhot Draw 5.2 on 
sourceforge[9] on 10/10/2000, there has been 12 more official releases 

till date for which source is available. Of the 12 releases 3 are beta 
versions namely JhotDraw 5.41b, 5.42b and 6.0b.  We have considered 
10/10/2000 as the initial release date of software. JhotDraw7 is a result 
of major revisions applied to previous versions of JhotDraw. It was 
developed by Werner Randelshofer.  So far about 7 different versions of 
JhotDraw7 have been released. The latest version is JhotDraw7.6.1. 
Each release of Jhot Draw is a result of set of revisions made to it in 
response to bug fixation, feature request, adaption to new environment 
or preventive activity. Since its first release in 2000 that consisted of 
9419 LOC, there has been 8 fold increases in LOC till date. The 
software has gone through 651 revisions till date. Table I gives the 
details of releases of JhotDraw over the period. 

Table 1. Details of releases of JhotDraw 

Versio
ns Release date LOC 

no. of 
classes 

Total 
NOM 

Total 
Attributes 

7.6 06-01-2011 80169 672 5885 1606 

7.5.1 01-08-2010 79275 669 5845 1599 

7.4.1 16-01-2010 72933 639 5582 1455 

7.3.1 18-10-2009 73361 638 5627 1516 

7.2 May-09 71675 621 5486 1479 

7.1 Mar-08 53753 463 4285 1087 

7.0.9 21-06-2007 52913 487 4234 1090 

7.0.8 10-01-2007 39179 343 3256 782 

6.0 b1 09-Jan-04 21091 301 2809 521 

5.4 b2 01-05-2003 21091 301 2809 521 

5.4 b1 21-08-2002 20594 296 2723 504 

5.3 09-02-2002 14611 208 1896 380 

5.2 10-10-2000 9419 148 1229 271 

 

3.2 Case Study 2: Rhino[10] 
Rhino is a JavaScript/ECMAScript interpreter and compiler. It is and 
open source written entirely in java. Rhino began life as an industrial 
project at Netscape and was then transitioned to open source. It is being 
managed by Mozilla foundation. Since its initial release in 1999, there 
have been 16 releases so far. The first release, Rhino1_4R3, consisted 
of 20335 LOC and the latest release consists of 43425 LOC. The size in 
terms of LOC has almost doubled from initial release to current release. 
Table 2 presents details of releases of Rhino. 

4. METHODOLOGY USED FOR DATA 
COLLECTION 
In order to conduct the study with the said objective we required the 
source code, measure of several metrics and revision details. Both the 
software used in the study are open source software therefore, the 
availability of source code for different versions was never a problem. 
The computation of different metrics was done using various tools 
meant to compute metrics The average measure of various metrics for 
releases of JhotDraw and Rhino is presented in Table III and IV 
respectively. The revision details of each release of software are 
maintained in the subversion repositories. The revision details of 
JhotDraw is available at [12] and that of Rhino is available at [13]. 

5. ANALYSIS OF EVOLUTION OF 
JHOTDRAW AND RHINO 
In this section we analyze the Lehman’s laws of software evolution in 
the light of measures of several metrics, computed for different versions 
of JhotDraw and Rhino released through evolution process. Some of the 

ACM SIGSOFT Software Engineering Notes Page 2 September 2011 Volume 36 Number 5

DOI: 10.1145/2020976.2020987 http://doi.acm.org/10.1145/2020976.2020987



laws have a direct relevance to the computed metrics whereas for some 
of the laws we did not find direct relevance to software metrics 

Table  2. Details of Release of Rhino 

Versions 
Release 
Date LOC 

no. of 
classes 

Total 
NOM 

Total 
Attributes 

Rhino 
1.7R2 22-03-2009 43425 146 1561 632 

Rhino 
1.7R1 06-03-2008 42830 145 1541 627 

Rhino 
1.6R7 20-08-2007 39930 133 1434 579 

Rhino 
1.6R6 30-07-2007 39914 133 1433 579 

Rhino 
1.6R5 19-11-2006 37960 123 1369 573 

Rhino 
1.6R4 10-09-2006 37960 123 1369 573 

Rhino 
1.6R3 24-07-2006 37946 123 1368 573 

Rhino 
1.6R2 19-09-2005 37771 123 1360 572 

Rhino 
1.6R1 29-11-2004 37961 126 1366 570 

Rhino 
1.5R5 25-03-2004 36051 127 1323 559 

Rhino 
1.5R4.1 21-04-2003 33800 123 1364 518 

Rhino 
1.5R4 10-02-2003 33718 123 1358 517 

Rhino 
1.5R3 27-01-2002 32421 113 1281 484 

Rhino 
1.5R2 27-07-2001 32060 113 1255 480 

Rhino 
1.5R1 10-09-2000 29495 110 1053 446 

Rhino 
1.4R3 10-05-1999 20335 84 802 318 

5.1 Law 6: Continuing Growth 
According to this law the functionality provided by the software should 
continually grow so as to provide user satisfaction over longer period. 
Growth can be interpreted as increase in the size of code or increase in 
the functionality being provided by the software. Whether software has 
grown in size can be determined by observing the variants of size 
metrics over subsequent releases. Similar approach was used by 
Lehman. We computed and compared the LOC, number of classes, 
Number of methods, Method Line of code for different releases of 
JhotDraw and Rhino. 

Growth of evolving software, in terms of functionality, can be measured 
by observing change in the number of classes, number of methods and 
number of public methods. The interpretation of continuing growth as 
functional growth was also used in [12]. 

5.1.1 Size Metrics 
The graphs in figure 1 and figure 2 show the growth in line of code for 
JhotDraw and Rhino. All the observations were made with respect to 
release date and not with respect to versions. Lines of code for the given 
case study include each line of code except blank and comments. The 
growth of LOC for the JhotDraw over different releases was observed 
to be liner where as the growth of LOC for Rhino seemed sublinear. 
The growth curves of number of classes and NOM, as given in figure 
3& figure 4, figure 5 & figure 6, for both the software, were almost 

similar to growth curve for LOC. Considering the growth curve 
according to size metrics, linear to sub linear growth rate was observed, 
there by suggesting that the law of continuing growth is reflected by 
Object oriented software. We found our observations to be similar to the 
one made in [14]. 

5.1.2 Function Metrics 
Function Metrics: The growth of software over several releases in terms 
of functionality can be attributes to increase in number of methods, 
number of class and number of public methods (NPM). For object 
oriented software an added functionality is provided by adding a class 
or by adding a public method to a class, there by leading to increase in 
number of classes and NPM. The growth curve in figure 7 and figure 8 
represents the growth of NPM over several releases of JHotDraw and 
Rhino respectively. The analysis with respect to number of classes and 
number of methods has been presented with size metrics. The growth 
curve of NPM for JhotDraw and Rhino shows a linear growth rate for 
JhotDraw but the growth rate for Rhino is linear during initial period 
followed by a long phase of sub linear growth rate. 

 
Figure1. Growth curve of LOC for JhotDraw. 

 

 
Figure2. Growth curve of LOC for varions releases of Rhino. 

5.2 Law 2 Increasing Complexity 
According to this law the complexity of software tends to increase over 
several releases unless some measures are taken to keep the complexity 
under check. It is generally perceived that growth adds to increase in 
complexity but if the appropriates changes are made; the evolution 
process might not show the attributes that conforms increase in 
complexity. Therefore it becomes difficult to determine whether the law 
is reflected by the evolution process or not. 
In case of object oriented systems, the complexity of the software 
system or subsystem can be determined using coupling between the 
classes (CBO), response for a class(RFC) and weighted method per 
class(WMC). The measures of CBO, RFC and WMC as complexity 
measures for object oriented software system has been validated 
through empirical research [15][16].  The measure of McCabe’s 

0
20000
40000
60000
80000

100000

01
/1
0/
20
00

01
/0
2/
20
02

01
/0
6/
20
03

01
/1
0/
20
04

01
/0
2/
20
06

01
/0
6/
20
07

01
/1
0/
20
08

01
/0
2/
20
10

Jhot�LOC

Jhot�LOC

0
10000
20000
30000
40000
50000

Rhino�LOC

Rhino�LOC

ACM SIGSOFT Software Engineering Notes Page 3 September 2011 Volume 36 Number 5

DOI: 10.1145/2020976.2020987 http://doi.acm.org/10.1145/2020976.2020987



cyclomatic complexity for member functions does not provide the true 
complexity measure for object oriented software. 

 
Figure3. Growth curve of number of classes for JhotDraw. 

 

 
Figure 4.  Growth curve of number of classes for Rhino. 

 

 
Figure 5.  Growth curve of number of methods in versions of 

JhotDraw. 
We computed WMC, CBO and RFC as complexity measure for 
JhotDraw and Rhino. The change in the measure of total WMC for 
JhotDraw and Rhino is given in figure 9 and figure 10 respectively. 
Both the graph shows an increasing trend in complexity measure. For 
JhotDraw, there was a linear increase observed after the release of 
JhotDraw 6.0. On looking into the details of revisions made to 
JhotDraw 6.0 it was observed that a major changes were brought about 
in the overall structure of the software. The whole software was 
modified to take advantage of the Java SE 6 platform. For Rhino, the 
increase in complexity in terms of increase in WMC was observed. The 
trends were similar for CBO and RFC, given in figure 11 (Jhot CBO), 
figure12 (Rhino CBO), figure 13 (Jhot RFC) and figure 14 (Rhino RFC) 
for both the software.  

 

 
Figure 6. Growth curve of number of methods for various versions 

of Rhino. 

 
Figure 7. Growth curve of number of public methods in different 

releases of JhotDraw 
 

 
Figure 8.  Growth curve of number number of public methods in 

various releases of Rhino. 
On the other hand, if we observe the change in the average measure of 
WMC for JhotDraw and Rhino given in figure 15 and figure 16 
respectively, the increase in complexity of the first version and the latest 
version is not very substantial. For Rhino, the average WMC increased 
during initial releases but a downward trend in complexity was 
observed during the recent releases. In case of JhotDraw, the average 
WMC increased during the initial releases, but again a decrease in 
average WMC was observed in the recent releases. The observations for 
average CBO and average RFC for JhotDraw and Rhino were almost 
similar to the one observed for WMC and are depicted in figure 17, 
figure 18, figure 19 and figure 20  respectively. 

0
200
400
600
800

01
/1
0/
20
00

01
/0
2/
20
02

01
/0
6/
20
03

01
/1
0/
20
04

01
/0
2/
20
06

01
/0
6/
20
07

01
/1
0/
20
08

01
/0
2/
20
10

Jhot�no.�of�classes

Jhot�no.�of�
classes

0
50

100
150
200

Rhino�no.�of�classes

Rhino�no.�of�
classes

0
2000
4000
6000
8000

01
/1
0/
20
00

01
/0
2/
20
02

01
/0
6/
20
03

01
/1
0/
20
04

01
/0
2/
20
06

01
/0
6/
20
07

01
/1
0/
20
08

01
/0
2/
20
10

Jhot�NOM

Jhot�NOM

0
500

1000
1500
2000

Rhino�NOM

Rhino�NOM

0
2000
4000
6000

01
/1
0/
20
00

01
/0
2/
20
02

01
/0
6/
20
03

01
/1
0/
20
04

01
/0
2/
20
06

01
/0
6/
20
07

01
/1
0/
20
08

01
/0
2/
20
10

Jhot�NPM

Jhot�NPM

0

500

1000

1500

Rhino�NPM

Rhino�NPM

ACM SIGSOFT Software Engineering Notes Page 4 September 2011 Volume 36 Number 5

DOI: 10.1145/2020976.2020987 http://doi.acm.org/10.1145/2020976.2020987



The interpretation of observation regarding total WMC, CBO and RFC 
is as follows. The continuing growth of the software led to an increase 
in the number of classes and the number of member functions thereby 
causing an increase to the total WMC, RFC and CBO. This indicates an 
increasing complexity. The interpretation of observations related to 
average WMC, CBO and RFC is slightly different. Due to increase in 
the number of classes the average of WMC, RFC and CBO was 
distributed over to added classes thereby showing a slow increase in 
complexity. The decrease in the complexity measure for recent releases 
of Rhino and JhotDraw can be attributed to activities meant to reduce 
the complexity. Similar observations were also made in [14]. 
Considering the observations we can consider the law to be reflected by 
JhotDraw and Rhino. 

 
Figure 9. Growth curve of sum of weighted method per class for 

releases of JhotDraw. 
 

 
Figure 10. Growth curve of sum of weighted method per class for 

releases of Rhino. 
 

 
Figure 11. Growth curve for total coupling between objects for 

various JhotDraw releases. 

5.3 Law1 Continuing Change 
According to this law, evolving software has to adapt to the 
changing environment i.e. the software has to continually change 
in order to be used for longer period. Software may change in 
response to bug fixing activity or in response to change in the 
environment. It is difficult to differentiate between growth and 
change. The change as a result of change in usage environment 
may include addition of some functions or classes which will 
increase the size of software leading to growth. 
In case of JhotDraw, the version 5.4b2 and 6.0 are absolutely 
same in terms of LOC and functionality. The overall package 
structure of 5.4b2 was changed resulting in the release of 
JhotDraw6.0. Moreover JhotDraw was completely reworked to 
take the advantage of Java SE 6 platform . In case of Rhino 
changes were made in response to change in the constructs of 
Java script. Looking at the observations related to revisions 
made to JhotDraw and Rhino, we can comment that, the changes 
provided the longer usable life to the software. 
 

 
Figure 12. Growth curve for total coupling between objects for 

various Rhino releases.  

 

 
Figure 13. Growth curve for total response for all the classes for 

different versions of JhotDraw. 

5.4 Law 7 Declining Quality 
According to this law, the quality of evolving software will decline 
unless some substantial efforts are made to improve it. The law is 
somewhat similar to Law 2. Increase in complexity itself is an indicator 
of declining quality. In case of JhotDraw and Rhino, the law is clearly 
reflected in the line of law 2. 

0
5000
10000
15000

01
/1
0/
20
00

01
/0
2/
20
02

01
/0
6/
20
03

01
/1
0/
20
04

01
/0
2/
20
06

01
/0
6/
20
07

01
/1
0/
20
08

01
/0
2/
20
10

Jhot�Total�WMC

Jhot�Total�
WMC

0

5000

10000

15000

Rhino�Total�WMC

Rhino�Total�
WMC

0
1000
2000
3000
4000

01
/1
0/
20
00

01
/0
2/
20
02

01
/0
6/
20
03

01
/1
0/
20
04

01
/0
2/
20
06

01
/0
6/
20
07

01
/1
0/
20
08

01
/0
2/
20
10

Jhot�Total�CBO

Jhot�Total�
CBO

0
200
400
600
800

1000

Rhino�Total�CBO

Rhino�Total�
CBO

0
5000
10000
15000
20000
25000

01
/1
0/
20
00

01
/0
7/
20
02

01
/0
4/
20
04

01
/0
1/
20
06

01
/1
0/
20
07

01
/0
7/
20
09

Jhot�Total�RFC

Jhot�Total�RFC

ACM SIGSOFT Software Engineering Notes Page 5 September 2011 Volume 36 Number 5

DOI: 10.1145/2020976.2020987 http://doi.acm.org/10.1145/2020976.2020987



5.5 Law 8 Feedback system 
According to this law, the evolution process is a multi–level, multi 
agent system. For open source software the law seems to be true since 
feature request and reporting of bug comes from user community. The 
existence of feedback system is true for JhotDraw and Rhino but this 
being multi-level involving multi-agent is hard to determine. 

 
Figure 14. Growth curve for total response for all the classes for 

different versions of Rhino. 
 

 
Figure 15. Growth curve for  average weighted method per class for 

different releases of JhotDraw. 
 

 
 

Figure 16. Growth curve for average of weighted method per class 
for releases of Rhino. 

5.6 Law 4 Conservation of organizational stability 
According to this law, the average global rate of activity on an evolving 
system is invariant over the product life time. Determining the average 
global rate of activity for open source software is extremely difficult if 

not impossible. The overall process that results in development of 
software involves community effort and this community generally 
grows for open source software. Eclipse, Linux, Firefox, Rhino are few 
examples. 

 
Figure 17. Growth curve for average coupling between the objects 

for different releases of JhotDraw. 
 

 
Figure 18. Graph showing growth curve of average coupling 

between objects for different releases of Rhino. 
 

 
Figure 19. Graph showing growth rate of average response per 

class for JhotDraw releases. 

5.7 Law 5 Conservation of Familiarity 
According to this law the changes made to an evolving software during 
successive releases is limited. This allows conserving familiarity for 
developer and maintainers. By the study of revisions of JhotDraw and 
Rhino we observed that the number of source file/ class files involved in  
single revision were few. There was only one instance where whole of 
the package structure of Jhotdraw was changed but the change was 
similar to all the source files and therefore familiarity was maintained. 

0
2000
4000
6000
8000

Rhino�Total�RFC

Rhino�Total�
RFC

0
5

10
15
20
25

01
/1
0/
20
00

29
/1
1/
20
01

29
/0
1/
20
03

29
/0
3/
20
04

29
/0
5/
20
05

29
/0
7/
20
06

29
/0
9/
20
07

29
/1
1/
20
08

29
/0
1/
20
10

JHot�avg.�WMC

JHot�avg.�
WMC

0
20
40
60
80
100

Rhino�avg.�WMC

Rhino�avg.�
WMC

0
2
4
6
8

01
/1
0/
20
00

01
/0
2/
20
02

01
/0
6/
20
03

01
/1
0/
20
04

01
/0
2/
20
06

01
/0
6/
20
07

01
/1
0/
20
08

01
/0
2/
20
10

Jhot�avg.�CBO

Jhot�Avg�CBO

0
2
4
6
8

Rhino�avg.�CBO

Rhino�Avg�
CBO

0
10
20
30
40

01
/1
0/
20
00

01
/0
2/
20
02

01
/0
6/
20
03

01
/1
0/
20
04

01
/0
2/
20
06

01
/0
6/
20
07

01
/1
0/
20
08

01
/0
2/
20
10

Jhot�avg.�RFC�

Jhot�Avg�RFC�

ACM SIGSOFT Software Engineering Notes Page 6 September 2011 Volume 36 Number 5

DOI: 10.1145/2020976.2020987 http://doi.acm.org/10.1145/2020976.2020987



 
Figure 20. Graph showing growth curve of average response per 

class for different releases of Rhino. 

 
Figure 21. Graph showing average cyclomatic complexity for 

different releases of JhotDraw. 

 
Figure 22. Graph showing average cyclomatic complexity for 

different releases of Rhino. 

5.8 Law 3 Self Regulation 
According to this law, the software evolution process is self regulating, 
leading to a steady trend. The observations made from the growth curve 
of JhotDraw and Rhino given in figure.1 and figure.2 shows a steady 
increase in size. There are no evidences of huge change or sharp 
increase in the size of the code. 

6. RELATED WORK 
Some of the prior work that closely relate to that of ours include the 
case study of Linux kernel by Ayelet Israeli el al[14]. Through the 
evolution study of 810 version of Linux kernel, their work highlighted 
the relatedness of Laws of software evolution to Linux kernel. A 
different view of evolution of linux was presented  in [17][18] by 
Godfrey et al. 

The pioneer work in the field of software evolution has been done by 
Belady and Lehman[1]. They conducted the study of 20 releases of 
OS/360 operating system. The study led them postulate the laws of 
software evolution. The laws were further developed and published in 
[3][5]. The work presented in this paper is also based on the laws of 
software evolution. 
Stephen Cook et al [11] have given an elaborate explanation on 
classification of software in S, P and E type. In [19] Kemerer and 
Slaughter have presented the methodology to do empirical research in 
software evolution. 

7. CONCLUSIONS AND FUTURE WORK 
In this paper we presented the study based on two open source 
software. The applicability of Lehman’s laws of software 
evolution to open source software was studied in the light of 
number of metrics. We observed that the reflection of some of 
the laws namely law 1, law2, and law 6 was easily determined 
using the metrics. But the relatedness of law 3, law 4 and law 5 
to open source software system was hard to determine and will 
require more empirical studies with relevant data. The major 
contributions of this work are: 

1. The study presented in the first of its type being done on 
open source software. 

2. The validity of the study can be ascertained as the source is 
available on internet. 

3. The study has opened up more opportunities for research in 
the field of software evolution. 

8. REFERENCES 
[1] Belady, L. A. and Lehman, M.M. 1976. A model of large program 

development. IBM Syst. J. 15,  225–252.  
[2] Chidamber, S.R. and Kemerer, C. F. 1994. A metrics suite for 

object oriented design. IEEE Transaction on. Software 
Engineering. 20, 6, 476–493.  

[3] Lehman, M.M. 1980. Programs, life cycles, and laws of software 
evolution. In Proceedings of the IEEE (Special issue of Software 
Engineering., 68,9, 1060 – 1076.  

[4] Lehman, M.M. 1980. On understanding laws, evolution, and 
conservation in the large-program life cycle. Journal of Systems 
and Software.1, 213-221. 

[5] Lehman, M.M. 1996. Laws of software evolution revisited. In  
Software Process Technology, ser. Lecture Notes in Computer 
Science. 1149, 108-124. http://dx.doi.org/10.1007/BFb0017737 

[6] McCabe, T.J. 1976. A complexity measure. IEEE Trans. Software 
Eng. 2, 4, 308–320.  

[7] Home page jhotdraw7. [Online]. Available: 
http://www.randelshofer.ch/oop/jhotdraw/index.html. 

[8] “Home page rhino.” [Online]. Available: 
http://www.mozilla.org/rhino/. 

[9] Cook, S., Harrison, R., Lehman, M.M. and Wernick, P. 2006. 
Evolution in software systems: foundations of the spe classification 
scheme. Journal of Software Maintenance and Evolution: 
Research and Practice.18, 1, 1-35. 

[10] Jhotdraw project page. [Online]. 
Available:http://sourceforge.net/projects/jhotdraw/. 

[11] Rhino revision details. [Online]. 
Available:https://developer.mozilla.org/en/Mozilla_ Source_ 
Code_ Via_ CVS. 

0
10
20
30
40
50

Rhino�avg.�RFC�

Rhino�Avg�
RFC�

0
0.5
1

1.5
2

2.5

01
/1
0/
20
00

01
/0
2/
20
02

01
/0
6/
20
03

01
/1
0/
20
04

01
/0
2/
20
06

01
/0
6/
20
07

01
/1
0/
20
08

01
/0
2/
20
10

Jhot�avg.�cyclomatic�comp

Jhot�Avg.�
cyclomatic�
comp

0
2
4
6

Rhino�avg.�cyclomatic�
comp

Rhino�Avg.�
cyclomatic�
comp

ACM SIGSOFT Software Engineering Notes Page 7 September 2011 Volume 36 Number 5

DOI: 10.1145/2020976.2020987 http://doi.acm.org/10.1145/2020976.2020987



[12]  Israeli, A. and Feitelson, D.G. 2010. The linux kernel as a case 
study in software evolution. Journal of Systems and Software. 83, 
3, 485 – 501. 

[13]  Basili, V.R., Briand, L. and Melo, W.L. 1995. A validation of 
object-oriented design metrics as quality indicators. IEEE 
Transaction on Software Engineering. 22, 751–761. 

[14]  Gyimothy, T.,  Ferenc, R. and Siket, I. 2005. Empirical validation 
of object oriented metrics on open source software for fault 
prediction.  IEEE Transaction on Software Engineering. 31, 897–
910. 

[15]  Godfrey, M.W. and Tu, Q. 2000. Evolution in open source 
software: A case study. In Proceedings of the International 
Conference on Software Maintenance. 131–142. 

[16]  Godfrey, M.W. and Tu, Q. 2001. Growth, evolution, and structural 
change in open source software. In Proceedings of the 4th 
International Workshop on Principles of Software Evolution, ser. 
IWPSE ’01. New York, NY, USA. 103–106. 

[17]  Kemerer, C. and Slaughter, S. 1999. An empirical approach to 
studying software evolution. IEEE Transactions on Software 
Engineering. 25, 4, 493 –509.  
. 

 

 

ACM SIGSOFT Software Engineering Notes Page 8 September 2011 Volume 36 Number 5

DOI: 10.1145/2020976.2020987 http://doi.acm.org/10.1145/2020976.2020987


