
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

^ (Caret)
v.001a specifications

	

Brian	
 Gormanly	

MSCS	
 610	

Spring	
 2013	

	

Henry II of Hopewell

	

1. Introduction
Caret is intended to provide a modern statically typed, compiled language targeted at
embedded systems, micro-controllers, ARM architecture and other systems whose
primary function is defined by a specific program or programs. Caret is a programming
language designed to exist directly on the hardware, including optional libraries for
general operating system functionality such as scheduling and memory management.
Caret also includes it’s own optional garbage collection (managed as a library within
your own program).

Languages like C work extremely well for programming in embedded systems because of
their low-level nature, portability on many platforms, low memory overhead and
hardware requirements. However, with the emergence of multi-core embedded systems
the lack of good support for modern concurrent programming methods and garbage
collection is apparent. Higher level and intermediary languages such as Java offer
garbage collection and some concurrent programming advantages but face limited
portability and fall short when it comes to working directly with the hardware, memory
usage and execution speed.

Programmers increasingly find themselves tasked with spanning multiple hardware
platforms to accomplish a single task and are expending considerable effort building and
maintaining code for thread and memory management on smaller platforms, and fighting
the operating system for control of memory and resources on larger ones. Commonly
they are writing half of their code in C and Assembler and the other half in Java or
another higher-level language and using XML or other intermediary markup to
communicate data between them. New “hybrid” platforms are immerging which
combine the I/O power of micro-controllers with the processing power of the efficient
and powerful ARM based CPUs. Caret can be run on both systems giving the following
major advantages:

1. CPU based system has no need of operating system overhead drastically
increasing processing speed and memory available. Overall cost is decreased, as
less CPU power and memory are needed to achieve requirements.

2. No need to use data interchange medium between the 2 systems if they are
running in the same language. Complex data structures can be shared with much
higher efficiency.

3. Code libraries and source code can be shared by programs running on both
systems

Caret is intended to thrive and enable developers in environments where they are the only
occupants. Currently, developers writing code for micro-controllers such as the Amtel
AVR who wants to write a multi-threaded application are maintaining the scheduling and
memory management code themselves. Other developers prototyping and building
robots and more advanced purpose driven embedded systems using ARM and Intel based

architectures are losing tremendous amounts of performance for their applications
because they are running on operating systems that manage their memory and schedule
their processor time for them.

Caret syntax is based on C syntax, enjoying the simplicity of braces for code blocks and
the beauty of semi-colons denoting the end of a line. Caret is heavily influenced by the
Go programming language (also known as golang) and Java. Go is a relatively new
language from Google designed by Robert Griesemer, Rob Pike and Ken Thompson.

Some differences between Caret and its predecessors include:

• Supports Java style inheritance but with multiple inheritance capability.
• Conceptually similar to Goroutines in Go, Caret has ‘Carets’ which provide for an

extremely easy to use concurrency pattern, without the need for an operating
system.

• Automatic creation of gettors and settors.
• Modified Java try-catch structure in which general Exceptions do not need to be

declared by default.

The Caret complier actually outputs ISO/IEC standard C++ code that is then compiled to
the correct platform using gcc or other C++ complier. This ensures that Caret can enable
developers to immediately start using the advantages of Caret on the almost countless
platforms that already have a C++ compiler.

1.1 Hello world

Simple “Hello World” example in ^

/* This is the hello world program
 * author: brian.gormanly
 */

package hello;
import {
 IO;
}

^ hello() {
 IO.println(”Hello World!”);
}

1.2 Program structure

The key organizational concepts in Caret are as follows:

• Programs can be written to run in multiple programming paradigms such as object
oriented and structured.

• Programs in Caret are strongly typed. Type safety guarantees the run-time
behavior of the program and allows for better memory management.

• Intuitive concurrency and communication, managed by creating “Carets” and
using the scheduler library to manage them.

Next is an example program that shows how to use the Scheduler to manage 2 Carets.
One beeps every 3 seconds for five seconds, ending with a longer beep on the last
iteration. The other process checks the state of a switch every 100ms and writes the
states to standard output. Manipulation of the scheduler is shown both as overriding the
super classes timing() method that ensures all changes made in this method are made
before the Scheduler starts the Carets, and also in the makeSound() method with the
direct reference to the super.getCaret() to check the count of the number of times the
Caret has run.

/**
 * Sample program to access Arduino digital ports
 * using Arduino language library.
 *
 * @author brian.gormanly
 *
 * Using multiple inhertance, This program also
 * demonstrates using the Caret scheduler to
 * manage processes, and the Caret Garbage
 * Collector. In this case the GC works
 * with default configuration, the scheduler
 * is configured per the notes below.
 *
 */

package gormanly.arduino

import {
 IO
 Arduino
 Scheduler
 GCollector
}

class BasicArduinoExample() extends Scheduler, GCollector {

 // set the hardware pin values
 const int buttonPin = 2;
 const int piezoPin = 9;

 // Caret to get the state of the switch attached to digital port 2 every 100 ms.
 ^getSwitch(100)
 getSwitchSetting() {

 buttonState = digitalRead(buttonPin);
 IO.println("The swtich is currently :" +
 if(buttonState == ButtonState.HIGH) ? "On" : " Off"));
 }

 // Caret to make a sound on a piezo speaker attached to pin 3 every 3 seconds.
 ^makeAnnoyingSound(3000)
 makeSound() {
 // duration of really annoying sound is 200ms
 beep(200);

 // on the 5th (last) call of this method make the noise longer
 if(this.getProcs(makeSound).runCount == 5) {
 beep(3000);
 }

 }

 /*
 Override the super class scheduler timing method to make some tweaks to default
 Scheduler settings.

 The Caret member of the Scheduler class does not need to be modified in the
 timing method, but doing so ensures that the changes are in place before
 any processes are created.
 */
 @Override
 private timing() {
 super();

 // do not run the getSwitchSetting in the first 2 seconds.
 this.getProcs(getSwitch).startdelay(2000);

 //Only do the really annoying sound 5 times
 this.getProcs(makeAnnoyingSound).repeat(5);
 }
}

1.3 Types and variables

Caret is a statically typed language and it requires that all variable and expressions have a
known type at compile time.

As in Java types in Caret can either be primitive types (value) or reference types.

Primitives in Caret:

• boolean : 0 or 1
• byte : from -128 to 127, inclusive
• short : from -32768 to 32767, inclusive
• int : from -2147483648 to 2147483647, inclusive
• long : from -9223372036854775808 to 9223372036854775807, inclusive
• char : from '\u0000' to '\uffff' inclusive, that is, from 0 to 65535
• float
• double

Also as in java primitives start with a lower case letter. Reference types will start with an
uppercase letter and are camel case by convention.

2. Lexical Structure
2.1 Programs

A Caret program source is created in Unicode formatted files that end with a .caret
extension. Like java, source files are arranged in folder structures that match the package
the source file belongs to.

2.2 Compilation Process

The compilation process for Caret is similar to the Go programming language
compilation process. It has a custom front end compiler that translates the code to C++
and then it uses the gcc compiler as the back end. This model ensures that Caret can be
compiled on any platform where C++ is currently compiled. For scripting or structural
programs there is a complier switch (-oc) to save the caret compiler output as c source
files that can be compiled with other c compilers if gcc is not available on a platform.
There are also a compiler switch (-ocpp) to same the front end output as C++ file(s), and
a –omc for lightweight C compilers such as avr-g++. As an added benefit, this model
provides all the optimizations implemented in GCC over the years are available,
including inlining, loop optimizations, vectorization, instruction scheduling, and more.

2.2 Grammars

The grammar of Caret is compact and regular, allowing for easy analysis by automatic
tools such as integrated development environments.

2.2.1 Basic Lexical grammar

letter = unicode_letter | "_" .
decimal_digit = "0" … "9" .
octal_digit = "0" … "7" .
hex_digit = "0" … "9" | "A" … "F" | "a" … "f" .

identifier = letter { letter | unicode_digit } .

2.3 Comments

Line comments : //
General comments : /* */
comments do not nest

2.4 Tokens

There are four classes: identifiers, keywords, operators, and literals. Carriage returns and
new lines are ignored. Semi-colons are required terminators for lines.

Identifiers
 Identifiers must start with a letter, the first letter can then be followed by any letter,
number or the following characters (-,_)

 Keyword List:
 ^ (caret)
 break
 case
 class
 const
 continue
 default
 else
 extends
 for
 fun
 if
 import

 interface
 package
 private
 protected
 public
 range
 return
 struct
 super
 switch
 this
 var

Operators:
+, &, +=, &=, &&, ==, !=, (,), -, |, -=, |=, ||, < , <=, [,], *, ^, *=, ^= , <-, >, >=, {, }, /,
<<, /=, <<=, ++, =, ,, ;, %, >>, %=, >>=, --, !, ..., ., :, &^, &^=

Literals:
int_lit = decimal_lit | octal_lit | hex_lit .
decimal_lit = ("1" … "9") { decimal_digit } .
octal_lit = "0" { octal_digit } .
hex_lit = "0" ("x" | "X") hex_digit { hex_digit } .

3. Example Programs

/**
 * Caesar cipher writen in ^
 *
 * Methods in this example have return values (void is assumed
 * if no return type is given in the method signature.
 *
 *
 * @author brian.gormanly
 */

package gormanly.cipher

import {
 IO
}

/**
 * This example uses only one Caret that runs to the end and terminates
 * if a class is chosen as the Caret the constructor is entry point for
 * the thread.
 */

^startCipher
class Cipher {

 Cipher() {
 String org = "This is a test of the emergency broadcast system.";
 IO.println("Original: " + org);
 String encrypt = Cipher.encode(org, 7);
 IO.println("String encrypted: " + encrypt);
 String decrypt = decrypt(encrypt, 7);
 println("String decrypted back: " + decrypt);
 println("Decode encrypted string:");

 for(i;<=26;1) { // shorthand for (int i=0; i<26; i++)
 println("iteration " + i + ": " + decode(encrypt, i));
 }
 }

 private String decrypt(String enc, int offset) {
 return encode(enc, -offset);
 }

 private String encrypt(String enc, int offset) {
 offset = offset % 26 + 26;
 String encoded = "";
 for (char i : enc.toLowerCase().toCharArray()) {
 if (Character.isLetter(i)) {
 int j = (i - 'a' + offset) % 26;
 encoded = encoded + (char) (j + 'a');
 } else {
 encoded = encoded + i;
 }
 }
 return encoded.toString();
 }
}

	

	

This	
 example	
 is	
 a	
 multi	
 part	
 one	
 that	
 starts	
 with	
 a	
 simple	
 PO^O	
 or	
 Plain	
 Old	
 Caret	

Object	
 that	
 is	
 communicated	
 between	
 two	
 separate	
 Caret	
 programs	
 running	
 on	
 two	

different	
 hardware	
 platforms	
 with	
 a	
 serial	
 communication	
 line	
 between	
 them.	
 	
 	

	

First	
 the	
 PO^O:	

	

/**
 * PO^O (Plain old Caret Object) that manages the
 * data collected by the robot and is used to convey
 * the information between the micro-controller and
 * the larger computational system.
 *
 * Note that getters and setters are not required they
 * are build automatically at compile time.
 *
 * @author brian.gormanly
 *
 */
package gormanly.robot.model

class RobotData() {
 int heading = 0;
 int pingDistance = 0;
}

	

This	
 is	
 the	
 program	
 running	
 on	
 the	
 micro-­‐controller.	
 	
 It	
 is	
 responsible	
 for	
 collecting	

sensor	
 data,	
 maintaining	
 the	
 data	
 in	
 the	
 local	
 robotData	
 instance	
 and	
 then	

transmitting	
 that	
 data	
 every	
 second	
 to	
 the	
 larger	
 platform	
 that	
 can	
 run	
 more	

intensive	
 algorithms	
 on	
 it.	

	

/**
 * Microcontroller code that collects basic sensor
 * data and sends the data to a larger system over
 * a serial connection.
 *
 * @author brian.gormanly
 *
 */

package gormanly.robot

import {
 IO
 Scheduler
 GCollector
 Serial
 Serialize

 sensors.Compass
 sensors.Ping

 gormanly.robot.model.RobotData
}

class HardwareManager() extends Scheduler, GCollector {

 // set the hardware pin values
 const int compassPin = 2;
 const int pingPin = 3;

 // instance of RobotData
 RobotData myData = new RobotData();

 // instances of sensor management objects
 Ping ping = new Ping(pingPin);
 Compass compass = new Compass(compassPin);

 // get the compass heading value every 1/10 second
 ^ getHeading(100)
 getHeading() {

 // get the compass reading and add 500 to it
 myData.setHeading(compass.read());
 }

 ^ getDistance(40)
 getDistance() {

 // get the distance in cm read by the ping sensor
 myData.setPingDistance(ping.read());
 }

 // send data to the computational program every 1 second
 ^ sendData(1000)
 void taskTransmitData(void)
 {
 // serialize the my Robot oject and send to the
 // computational program.
 byte[] serialTransmission = Serialize(myRobot);
 Serial.println(serialTransmission);
 }
}

	

Here	
 is	
 the	
 larger	
 platform	
 program,	
 for	
 brevity	
 I	
 have	
 stubbed	
 the	
 actual	
 algorithm	

being	
 preformed	
 on	
 the	
 data.	
 	
 The	
 important	
 part	
 here	
 is	
 that	
 a	
 simple	
 cast	
 to	
 the	

RobotData	
 class	
 retrieves	
 the	
 collected	
 serial	
 data.	

	

	

	

/**
 * Microcontroller code that collects basic sensor
 * data and sends the data to a larger system over
 * a serial connection.
 *
 * @author brian.gormanly
 *
 */

package gormanly.robot

import {
 IO
 Scheduler
 GCollector
 Serial

 gormanly.robot.model.RobotData
}

class CoolAlgorithm() extends Scheduler, GCollector {

 // local robot data instance
 RobotData myData = new RobotData();

 ^retrieveRobotData(1000)
 retrieveData() {
 int bytes; // bytes returned from read()
 bytes = Serial.read();

 // try to cast the data collected into myData
 // note the general exceptions (Excepton in java)
 // does not need to be explicitly defined.
 try {
 myData = (RobotData) bytes;
 }
 }

 ^doSomethingCool(1000)
 doSomethingCool() {
 // does sometihng really cool with the data we collected
 // in myData

 }

 /*
 Override the super class scheduler timing method to make some
tweaks to default
 Scheduler settings.

 The Caret member of the Scheduler class does not need to be
modified in the
 timing method, but doing so ensures that the changes are in
place before
 any processes are created.
 */
 @Override
 privat timing() {
 super();

 // we want to make sure that the doSomethingCool caret
 // waits for the completion of the retrieveRobotData caret
 this.getProcs(doSomethingCool).syncAfter(retrieveData);
 }
}

