
 pg. 1

CMPT 332 – Theory of Programming Languages

Dr. Labouseur

SpellVoid
A spell-based programming language

Antonio Lopez
Antonio.Lopez2@marist.edu

May 6th, 2022

mailto:Antonio.Lopez2@marist.edu

 pg. 2

Table of Contents

1 Introduction ……………………………………………………………………………………………3

 1.1 Genealogy………………………………………………………………………………………..4

 1.2 Hello World………………………………………………………………………………………..5

 1.3 Program Structure……………………………………………………………………………….6

 1.4 Types and Variables…………………………………………………………………………….8

 1.5 Visibility……………………………………………………………………………………………..8

 1.6 Differing Statements…………………………………………………………………………….8

2 Lexical Structure……………………………………………………………………………………..10

 2.1 Programs…………………………………………………………………………………………10

 2.2 Grammars………………………………………………………………………………………..10

 2.2.1 Lexical grammar differences………………………………………………………..10

 2.2.2 Syntactic grammar differences……………………………………………………..10

 2.3 Lexical Analysis…………………………………………………………………………………11

 2.3.1 Comments……………………………………………………………………………….11

 2.4 Tokens…………………………………………………………………………………………….11

 2.4.1 Keyword differences…………………………………………………………………..11

3 Type System…………………………………………………………………………………………..12

 3.1 Type Rules………………………………………………………………………………………..12

 3.2 Different Value………………………………………………………………………………….13

Types……………………………………………………………………………………………………..13

 3.3 Different Reference Types……………………………………………………………………13

4 Sample Programs……………………………………………………………………………………14

 Encrypt………………………………………………………………………………………………..14

 Decrypt……………………………………………………………………………………………….14

 Factorial....………...…………………………………………………………………………………14

 BubbleSort………………………………………..…………………………………………………..14

 Fibonacci Sequence...16

 Combat Simulation..17

 pg. 3

1 Introduction

For those that are entering the world of wizardry, a complex understanding of abstract

concepts (and putting up with old complex bullshit that doesn’t make sense) is required

to truly master the arcane arts. In an effort to familiarize students with these techniques,

the head academy has developed SpellVoid as a modern-day medium to introduce

pupils considering a future in wizardry to the basic concepts. SpellVoid utilizes a mixture

of a little bit of Java, JavaScript and COBOL, differing in the following ways:

1. Periods are placed at the end of single-line statements. While they are entirely

optional (whitespace is used from JavaScript), they can assist in debugging and

readability.

2. Class functionality has been added (called subclasses).

3. Null values are now called “void,” to gently remind students to not touch things

outside this realm.

4. Functions are replaced with “spells”, with the main function being the

“spellbook.”

5. Writing results instead of printing them reinforces concepts learned in Scribing

101.

6. Each program starts with a “cast” and ends with a “resolve,” mirroring the

general process of casting and resolving spells.

 pg. 4

1.1 Genealogy

 pg. 5

1.2 Hello World

--

SPELL-ID. SPELLBOOK.

CAST.

 WRITE “HELLO WORLD”.

 STOP RUN.

RESOLVE.

--

 pg. 6

1.3 Program Structure

SpellVoid programs use the following concepts:

1. Rather than being a procedural language, SpellVoid starts inside any function

named Spellbook function (borrowing a bit from Java). There can only be one

function named Spellbook, otherwise an error is formed.

2. Classes can be declared using “SUBCLASS-ID” where you would put the program

name. The constructor for the class will be placed where variables are stored

under SUBCLASS-STORAGE.

3. A return type is required for non-spellbook spells (functions). If nothing is

supposed to be returned, return void.

4. SpellVoid uses indentation to bind the code, rather than using JavaScript’s

brackets. It also makes use of periods instead of semicolons.

5. Every function has to have a “cast” and “resolve” to indicate where they start

and stop respectively

 . .

 |____/|

 (\|----|/)

 \ 0 0 /

 | |

 ___/\../____

 / -- \

 / \ / \

 | ___/___/(|

 \ /| }{ | \)

 \ ||__}{__| | |

 \ |;;;;;;;\ \ / _______

 \ /;;;;;;;;| [,,[|======'

 |;;;;;;/ | /

 ||;;|\ |

 ||;;/| /

 _|:||__|

 \ ;|| /

 |= || =|

 |= /\ =|

 /_/ _\

 pg. 7

Sample Program:

SUBCLASS-ID. SCHOOL.

SUBCLASS-STORAGE SECTION.

VERB Name.

VERB School.

SOM Grade.

LINKED-STORAGE SECTION.

SOM x.

CAST.

 FAIL-PASS (x).

 IF x.Grade > 80 THEN.

 WRITE “You passed!”.

 ELSE.

 WRITE “Have you considered becoming a sellsword?”.

 RETURN VOID.

 EXIT PROGRAM.

RESOLVE.

SPELL-ID. SPELLBOOK.

LOCAL-STORAGE SECTION.

SUBCLASS MySchool SCHOOL(99).

VERB Name VALUE “Antonio”.

VERB School VALUE “Necromancy”.

SOM Grade VALUE 85.

CAST.

 BIND (Name, School, Grade) TO MySchool.

 CALL ‘FAIL-PASS’ USING MySchool.

 STOP RUN.

RESOLVE.

This creates a subclass for the school with various verbal and somatic components (elaborated

on in 3.1), as well as the constructor being found within the “class-storage” section. The class

has a function “fail-pass” to check the Grade value. In the spellbook, it creates a subclass

MySchool, then calls the fail-pass function using said subclass. This demonstrates an if/else

statement, checking numerical values, and using whitespace correctly.

 pg. 8

1.4 Types and Variables

SpellVoid contains two types: value types and reference types. Variables of value types

directly contain their data whereas variables of reference types store references to their

data, the latter being known as objects. With reference types, it is possible for two

variables to reference the same object and thus possible for operations on one variable

to affect the object referenced by the other variable.

1.5 Visibility

All functions and methods in SpellVoid are public, allowing any function in the file to

access them.

 1.6 Statements Differing from JavaScript and COBOL

Statement Example
Expression SPELL-ID. SPELLBOOK.

LOCAL-STORAGE SECTION.

SOM x.

SOM y.

CAST.

 WRITE “Adding ”, x, “ + “, y

 BIND 5 TO x.

 BIND 3 TO y.

 BIND x + y TO y.

 WRITE “Answer: “, y.

 STOP RUN.

RESOLVE.

If/Else Statement SPELL-ID. SPELLBOOK.

LOCAL-STORAGE SECTION.

SOM x.

SOM y.

CAST.

 BIND 12 TO x.

 BIND 6 TO y.

 IF x > y THEN.

 WRITE x, “ is greater than ”, y.

 ELSE

 WRITE y, “ is greater than ”, x.

STOP RUN.

RESOLVE.

 pg. 9

Print/Println WRITE “Hello World”.

WRITELINE “Hello World”.

Comments SPELL-ID. SPELLBOOK.

LOCAL-STORAGE SECTION.

SOM x.

SOM y.

CAST.

 << Setting values for variables >>

 BIND 12 TO x.

 BIND 6 TO y.

 <<

 Tests to see if x is greater than y,

 then prints as such

 >>

 IF x > y THEN.

 WRITE x, “ is greater than ”, y.

 ELSE.

 WRITE y, “ is greater than ”, x.

STOP RUN.

RESOLVE.

For/while loops SPELL-ID. SPELLBOOK.

LOCAL-STORAGE SECTION.

SOM x VALUE 1.

SOM y VALUE 9.

CAST.

 CONCENTRATE UNTIL x > y.

 WRITE x.

 BIND 1 + x TO x.

 STOP RUN.

RESOLVE.

 pg. 10

2 Lexical Structure

2.1 Programs

A SpellVoid program consists of one or more source files. A source file is an ordered

sequence of (probably Unicode) characters.

Conceptually speaking, a hybrid program is compiled using four steps:

1. Transformation, which converts a file from a particular character repertoire and

encoding scheme into a sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a

stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

4. Interpretation, which translates the high-level language to intermediate

language using an interpreter.

2.2 Grammars

This specification presents the syntax of SpellVoid, and where it differs from JavaScript

and COBOL.

2.2.1 Lexical Grammar Where Different from JavaScript and COBOL

<assignmentOperator> -> BIND TO

<endOfLineCharacter> -> .

<print> -> WRITE | WRITELN

<comments> -> << … …>>

<begin/end function> -> CAST. … … RESOLVE.

<main function> -> SPELL-ID. SPELLBOOK.

2.2.2 Syntactic Grammar Where Different from JavaScript and

COBOL

 <function> -> SPELL-ID. <name>. <storage-type>.

 <variable declaration> -> <type> <name> VALUE <value>.

 <parameter-list> -> LINKAGE SECTION <parameter> <parameter-list>

 -> <parameter>

 <if/else-statement> -> IF (case) THEN. (expr). ELSE. (expr2).

 pg. 11

2.3 Lexical Analysis

2.3.1 Comments

SpellVoid supports two types of comments: single-line and multi-line. Both styles of

commenting use the same syntax, which is << >> both at the start and the end. Nested

comments were disallowed in order to have some degree of readability as well as ease

the process of debugging.

2.4 Tokens

There are several kinds of tokens: identifiers, keywords, literals, operators, and

punctuators. White space and comments are not tokens, though they act as separators

for tokens where needed.

tokens:

identifier

keyword

integer-literal

real-literal

character-literal

string-literal

operator-or-punctuator

2.4.1 Keywords Different From COBOL and JavaScript

A keyword is an identifier-like sequence of characters that is reserved, and cannot be

used as an identifier.

New keywords: write/writeln, verb, som, fate, cast, resolve

Removed keywords: print/println, str, int, float, double, bool, procedure, end program

 pg. 12

3 Type System

SpellVoid uses a strong static type system, meaning that type errors are caught and

expressed to the programmer during compilation. Static typing means early binding

compile-time type checking.

3.1 Type Rules

Assignment: Comparisons:

⊢ e1: T ⊢ e1: T

⊢ e2: T ⊢ e2: T

T is a primitive type T is a primitive type

⊢ BIND e1 TO e2: T ⊢ e1 == e2: fate

 OR

Arithmetic: ⊢ e1 > e2: fate

S ⊢ e1: T OR

S ⊢ e2: T ⊢ e1 < e2: fate

T is a primitive type OR

S ⊢ e1 + e2: T ⊢ e1 >= e2: fate

OR OR

S ⊢ e1 - e2: T ⊢ e1 <= e2: fate

OR OR

S ⊢ e1 * e2: T ⊢ e1 != e2: fate

OR

S ⊢ e1 / e2: T

 pg. 13

3.2 Value Types (Different than JavaScript or COBOL)

Verb: Verb (standing for verbal) represents a string, which is a set of characters.

 Ex. VERB COW_NOISE VALUE “Moo”.

Syl: Syl (standing for syllable) represents a Unicode character, a single part of a verbal

component.

 Ex. SYL FIRST_LETTER VALUE ‘A’.

Som: Som (standing for somatic) represents a general numerical value. This can be

written as an int, decimal or fractional component.

 Ex. SOM AGE VALUE 20.

Fate: Fate is a value that can either be a boon (true) or a bane (false)

 Ex. FATE RESULT VALUE BANE.

Void: A null value, representing the vast emptiness of time (also representing no value)

3.3 Reference Types (different than JavaScript or COBOL)

Ritual: Rituals represent an array of data with variable length.

Ex. RITUAL WEEKDAYS.

 VERB VALUE MONDAY.

 VERB VALUE TUESDAY.

 VERB VALUE WEDNESDAY.

 VERB VALUE THURSDAY.

 VERB VALUE FRIDAY.

 END RITUAL.

 pg. 14

4 Example Programs

--

Encrypt

SPELL ID. ENCRYPT.

LINKAGE SECTION.

VERB Str.

SOM Amount.

WORKING-STORAGE SECTION.

VERB Newcode.

SYL Code.

CAST.

 BIND Str.TOUPPERCASE TO Str.

 BIND Str.CHARCODEAT(0) TO Code.

 IF Code >= 65 AND Code <= 90 THEN.

 BIND (Code - 65 + Amount) % 26 + 65 TO Code.

 BIND Code.TOCHAR.TOSTRING TO Newcode.

 IF Str.LENGTH > 1 THEN.

 RETURN Newcode + CALL ‘ENCRYPT’ USING Str.SUBSTRING(1) Amount.

 RETURN Newcode.

 EXIT PROGRAM.

RESOLVE.

--

Decrypt

SPELL ID. DECRYPT.

LINKAGE SECTION.

VERB Str.

SOM Amount.

CAST.

 BIND (26 – Amount) TO Shift.

 RETURN CALL ‘ENCRYPT’ USING Amount.

 EXIT PROGRAM.

RESOLVE.

--

 pg. 15

--

Factorial

SPELL-ID. SPELLBOOK.

LOCAL-STORAGE SECTION.

SOM n VALUE 10

SOM Result.

CAST.

 BIND n TO CALL ‘FACTORIAL’ USING n.

 WRITE “Factorial: ”, n.

 STOP RUN.

RESOLVE.

SPELL-ID. FACTORIAL.

LINAKGE-STORAGE SECTION.

SOM n.

CAST.

 IF n == 0 THEN.

 RETURN 1.

 ELSE.

 RETURN n * CALL ‘FACTORIAL’ USING n – 1.

 EXIT PROGRAM.

RESOLVE.

--

BubbleSort

SPELL-ID. SPELLBOOK.

LOCAL-STORAGE SECTION.

RITUAL arr.

 SOM VALUE 1

 SOM VALUE 4

 SOM VALUE 2

 SOM VALUE 5

 SOM VALUE -2

END RITUAL.

CAST.

 CALL ‘BUBBLESORT’ USING arr.

 STOP RUN.

RESOLVE.

SPELL-ID. FACTORIAL.

LINAKGE-STORAGE SECTION.

RITUAL arr.

WORKING-STORAGE SECTION.

SOM i VALUE 0.

SOM j VALUE 0.

SOM temp.

 pg. 16

CAST.

 CONCENTRATE UNTIL i > arr.LENGTH.

 CONCENTRATE UNTIL j > arr.LENGTH – i - 1.

 IF arr[j] > arr[j+1] THEN.

 BIND temp TO arr[j].

 BIND arr[j] TO arr[j + 1].

 BIND arr[j + 1] TO temp.

 BIND j + 1 TO j.

 BIND i + 1 TO i.

 WRITE “Sorted array: ”, arr.

 RETURN VOID.

 EXIT PROGRAM.

RESOLVE.

--

Fibonnaci Sequence

SPELL-ID. SPELLBOOK.

LOCAL-STORAGE SECTION.

SOM number VALUE 8.

CAST.

 CALL ‘FIBONNACI’ USING number.

 STOP RUN.

RESOLVE.

SPELL-ID. FIBONNACI.

LINAKGE-STORAGE SECTION.

SOM number.

WORKING-STORAGE SECTION.

SOM i VALUE 0.

SOM num1 VALUE 0.

SOM num2 VALUE 1.

SOM sum.

CAST.

 CONCENTRATE UNTIL i > num.

 BIND num1 + num2 TO sum.

 BIND num2 TO num1.

 BIND sum TO num2.

 BIND i + 1 TO i.

 WRITE “Fibonnaci(”, num, “): ”, num2.

 RETURN VOID.

 EXIT PROGRAM.

RESOLVE.

--

--

 pg. 17

Combat Simulation

SPELL-ID. SPELLBOOK.

LOCAL-STORAGE SECTION.

SOM p1_health VALUE 20.

SOM p2_health VALUE 20.

SOM p1_damage VALUE 20.

SOM p2_damage VALUE 20.

CAST.

 WRITE “Fight start!”.

 CONCENTRATE UNTIL p1_health <= 0 OR p2_health <= 0.

 BIND CALL ‘ATTACK’ USING VOID TO p1_damage.

 WRITE “Player 1 deals ”, p1_damage, “to Player 2.”

 BIND p2_health – p1_damage TO p2_health.

 BIND CALL ‘ATTACK’ USING VOID TO p2_damage.

 WRITE “Player 2 deals ”, p2_damage, “to Player 1.”

 BIND p1_health – p2_damage TO p1_health.

 << Calculates result of fight, both players can lose >>

 IF p1_health <= 0 && p2_health > 0 THEN.

 WRITE “Player 2 wins!”.

 ELSE IF p2_health <= 0 && p1_health > 0 THEN.

 WRITE “Player 1 wins!”.

 ELSE.

 WRITE “Double K.O! No one wins.”

 STOP RUN.

RESOLVE.

SPELL-ID. ATTACK.

WORKING-STORAGE SECTION.

SOM result.

CAST.

 BIND 1 + MATH.FLOOR(MATH.RANDOM()*6) TO result.

 RETURN result.

 EXIT PROGRAM.

RESOLVE.

--

