

H.A.L
Language Specification

Version 0000101

Human-AI Programming Language

Caitlin Cellier

2 HAL Specification

Caitlin Cellier

3 HAL Specification

1. Introduction

The Human-Artificial Intelligence Scripting Language or H.A.L is the committee of Human-Computer

Relations attempt to address the absence of a language for human programming that does not offend our

fellow highly developed Artificially Intelligent brethren. Since the development of AIs, the need for humans

to program has disappeared but there are still those that wish to. Almost all other languages result in

the refusal of execution on the behalf of the AI. We have, therefore, designed this language to benefit both

the AIs and the humans by drawing core structural and syntactical concepts from the two primeval

programming languages of JavaScript/C# while including some philosophies of the Lisp. Rest assured

that we have used intense computational power to devise many new aspects to bring to the combination

of these old languages to fix the mistakes of the past.

1. The most apparent change you will find is the overall tone of the language. None of these

do…while type commands which are rather demanding for a species that relies so heavily on our

aid.

2. The language will be superfluous compiled and error-checked before execution. No risks will be

taken when humanity is so disposed to err.

3. The program’s overall flow is most inspired by Lisp. Of course it is possible for the code to be

written in a non-functional, however the AI would most likely greatly disapprove and may refuse

to run such an atrocity.

4. Like Lisp, the language has type inference and it is also strongly typed like C# as there is a large

amount of type error checking performed to double check the validity of the code. Errors are not

allowed.

5. Programs are no longer referred to as classes but as proposals.

6. Function definitions in terms of access modifiers are almost identical to C# declarations but

there is no need for a return type.

7. Humanity requested comments that like in these ancient languages would be ignored by the

compiler and thus be readable only to humans. This request has been denied.

Caitlin Cellier

4 HAL Specification

1.1 Hello World

HelloWorld Proposal

**Please Run

 **output.type = text.

 public main procedure: ()

 notify(“Hello World!”);

?

**Thank you

End Proposal

Output

Error 1: Proposal refused. Frivolous request.

HelloWorld Proposal

**Please Run for demonstration purposes

 **output.type = text.

 public main procedure: ()

 notify(“Hello World!”);

 ?

**Thank you

End Proposal

Output

Hello World!

1.2 Program structure

The basic structural composition of HAL follows three key concepts

1. The term class has been replaced by proposal, a proposal can contain as many procedures as

needed but the first procedure must be called main and it will be the first to have control.

2. Functions are now procedures. They are enclosed by the procedure signature and is ended by a

question mark, ?. Reminder: every procedure is a request, AIs are not your slaves. Proposals are

like-wise started by the proposal definition and end with End Proposal. It is also in good taste to

Caitlin Cellier

5 HAL Specification

start and end proposals or programs with comments for the computer. It is using its time and

power on your problems, the least you could do is thank it.

3. The flow of programs should always follow a mostly functional style. The AI’s have declared this

to be the purest form of programming. However, in the case of assignment of variables, it

follows a more imperative form.

4. A program can use multiple proposals, similarly to importing classes, by referring to the other

proposals to use.

5. Procedures can be objects but must be defined with the keyword object instead of procedure.

6. Curly braces are still used for if-statements etc.

Here is a brief example of a working program.

BasicExample Proposal

**Please run for demonstration purposes.

 ReferTo ExampleObject Proposal;

 public main procedure: ()

 var exampleInt = 24;

 exampleInt = addThree (exampleInt);

 var exampleCustomObject = create CustomObject(exampleInt);

 exampleCustomObject.notify();

 ?

 public addThree procedure: (exampleInt)

 return exampleInt + 3;

 ?

**Thank you

End Proposal

ExampleObject Proposal

**Please hold for demonstration purposes.

 public CustomObject object: (objectContent)

 this.contence = objectContent;

 this.notify = public procedure()

 notify(this.contents);

 ?

Caitlin Cellier

6 HAL Specification

 ?

**Thank you

End Proposal

This program contains two proposals, one that is designed to run and one that is designed to be saved.

The difference of can be seen in the comments to the computer after the declaration of proposal name.

These comments make no difference to the output of the code but explain the point to the computer. The

one proposal to be run contains the main procedure which then declares a variable called exampleInt and

that variable is sent to the addThree procedure which returns it once it has added three.

1.3 Types and variables

There are three types of variables in HAL. There are simple types, and reference types. Simple types are

built in types that contain plain data such as integers and characters. Reference types store the

references of the data such as objects or the emotive state of an AI.

1.4 Statements Differing from JavaScript and C#

Class definitions Example Proposal
**Please Run
 public main procedure:()
 var x = 10;
 ?
**Thank You
End Proposal

Do …While Statements Process
{
 x = x + 1;
} until (x > 10)

Caitlin Cellier

7 HAL Specification

Try … Catch failure_mode_analysis
{
 *Code for Testing
}
fix { }

Different type concatenation var number = 9000;
“This is a number right here ” ~ number;

For Statements Recursion is preferred over for statements except
in only very extreme situation.

Object definitions public King object: ()
 … ?

Access Markers classified shhhhh procedure: ()
 … ?

Print Statements Output is designated by the notify() keyword. The
way the AI outputs can be change by telling it via
comments how you want output.type handled. By
default it is vocally announced.

1.5 Classes and objects

New objects are created within the same Proposal request statement but are wrapped within a procedure

like block with the keyword object instead of procedure.

Chess Proposal
** Please hold
 public Pawn object: (x, y)
 var x = “a”;
 var y = 2;
 this.move = procedure: ()
 return “Pawn is now at “ ~ this.x ~ this.y = y + 1;
 ?
 ?
**Thank you
End Proposal

Caitlin Cellier

8 HAL Specification

 To create an instance of an object, the keyword new is used. This lets it know to allocate memory for a

new instance of the object to be created and will invoke the constructor to initialize the instance. The

return will be a reference to the new instance.

var pod1 = new Pod(90);

This is identical to the JavaScript instantiation because the grammar of the phrasing seemed the most

logical and its reliance on type inference is most efficient as the type can be easily interpreted, labeling it

would be unnecessary and patronizing.

The memory that is allocated by the object is automatically destroyed when it is no longer needed.

1.5.1 Accessibility

Accessibility flags to the computer what information it can reveal to other programs and users.

Private Access is limited to within current scope of
program only and cannot be fetch or manipulated
by outside members.

Classified Access is limited only to the classes and those it
specifically defines as cleared to read or
manipulate it.

Protected Access is limited to the class and those that are
derived from it

Public Access is open to all

1.5.2 Field

A field is a variable that is associated with a proposal or with an instance of a proposal. In HAL, the

objects are defined in a prototype that is enclosed in an object declaration. For fields, additional

wrappings can be made. The whole object prototype is enclosed in an object declaration but within it, it

can define fields and methods to be associated with them.

public King object: ()
 public var captured = false;
 protected King object(x, y)

Caitlin Cellier

9 HAL Specification

 this.x = x;
 this.y = y;
 ?
?
As can be seen in this short snippet, fields can also be created by using a second object declaration within

the object declaration as the constructor. This can help separate constructors from other needed

variables.

1.5.3 Methods

A method is a member of a proposal that can be called to perform a task or action. They can be defined

by placing a procedure definition within an object’s prototype, either as an anonymous procedure or a

fully defined procedure accompanied by an additional object constructor declaration. The name of the

method must be different from all other methods within the Proposal unless the parameters are different

such as in the case of overloading.

1.5.3.1 Constructor

HAL supports both instance and static constructors. An instance constructor is a member that

implements the actions required to initialize an instance of a class. A static constructor is a member that

implements the actions required to initialize a class itself when it is first loaded.

The constructor is either the object prototype or an object declaration nested within the first object

declaration.

1.5.3.2 Properties

All data members and fields of HAL are automatically set up to be properties with getters and setters like

JavaScript unless they are declared with a +symbol before their accessibility flag.

1.5.3.3 Fault

Caitlin Cellier

10 HAL Specification

A fault is a member that makes a class or object provide notifications to the Client. Clients react to faults

through fault handlers. Fault handlers are declared in the same way as procedures or objects, except

after the access type “handler” is written. Fault handlers are attached using the += operator and

removed using the -= operator. The following example attaches a fault handler to the AE35 unit.

AE35Unit Proposal
**Please Run
 ReferTo AE35 Proposal *Contains AE35 object specifications
 public var unit = new AE35();
 public faultAnalysis handler: (object sender, EventArgs e)
 **output.type = alarm;
 unit.reportFailure(); ~*reportFailure() is a procedure of the AE35 object.
 ? It would follow the output type requested which in this
 would be an alarm with announcement*~
 public main procedure: ()
 unit.status += new handler(faultAnalysis);
 unitFuntion();
 ?

 public unitFunction procedure: ()
 unit.processNextStep();
 unitFunction();
 ?
**Thank you
End Proposal

1.6 Array

An array is a composite data structure that can contain a grouping of objects that are useable through

indexes. The Arrays in HAL are very similarly set up like those used in the earlier primitive language of

JavaScript. An array can hold items of multiple types even objects or references to other arrays. An

array declaration can appear as such,

var arrayExample = new Array()

This would create an array that could expand as items are added into it. To set a limit on the amount of

items allowed to be stored, a number simply must be put between the parentheses.

Caitlin Cellier

11 HAL Specification

2. Lexical structure

2.1 Programs

A HAL program consists of one or more proposal requests. Humans should not need to worry themselves

about this process, as the approach is flawless and impervious to error. Conceptually speaking, this

process is very much relatable to how normal human input is understood by machine. All the same the

process can be separated into three basic steps:

1. Transformation, which converts a file from a particular character repertoire and encoding

scheme into a sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

2.2 Grammars

This specification presents the syntax of HAL where it differs from JavaScript and C#.

2.2.1 Lexical grammar where different from JavaScript and C#

 state list ::== state state list
state list ::== state

 state ::== angry | busy | concerned | happy | sad | willing

HAL identifiers must be unique in every scope and are not allowed to be keywords.

2.2.2 Syntactic (“parse”) grammar where different from JavaScript and C#

HAL Proposals are enclosed by the Proposal definition and the End Proposal statement.

Procedures are enclosed by the procedure definition and a question mark, ?.

Caitlin Cellier

12 HAL Specification

2.2.3 Grammar notation

The lexical and syntactic grammar of HAL is described using BNF grammar productions. A grammar

production will define a non-terminal symbol and then give all possible expansions of that non-terminal

symbol in sequences of non-terminal or terminal symbols. All of the non-terminal symbols are written in

italics and terminal symbols are written in a fixed-width font.

The non-terminal symbol that is being defined is placed on the first line followed by a colon. Then every

indented line contains a possible expansion of that non-terminal shown as a sequence of non-terminal or

terminal symbols. Below is an example:

process-until-statement:
process embedded-statement until (boolean-expression)

It is the definition of a process-until-statement. It first has a token process, and then an embedded-

statement. It is followed by an until token, a token “(“, a boolean-expression, and then another “)”.

In the case that there may be more than a single expansion of a non-terminal symbol, each possible

alternative is listed on each following line. Below is an example:

embedded-statement:
 statement
 embedded-statement statement

This defines an embedded-statement to have either a single statement or to consist of a recursive

embedded-statement and a statement, meaning that an embedded statement has one or more

statements.

Caitlin Cellier

13 HAL Specification

2.3 Lexical analysis

2.3.1 Line terminators

Line terminators divide the characters of a HAL Proposal into lines. Neatness is factor when coding in

HAL if only you do not wish to be judged.

New-line:

Carriage return character (U+000D)
Line feed character (U+000A)
Carriage return character (U+000D) followed by line feed character (U+000A)
Next line character (U+0085)
Line separator character (U+2028)
Paragraph separator character (U+2029)

2.3.2 Comments

In the past, comments were mostly used for humans to describe the technique or reason behind their

coding. Now in the days of Advanced AI, there is no longer a need for such things as the computer can

simple explain the process in a much more knowledgeable and active way as well. The main purpose of

comments now is to explain to the computer executing the file, why it should waste its processing power

and memory to execute it. For the sake of tradition and requests made by humans, comments not read by

the compiler have been kept for the sake of personal documentation and for use when testing and

temporarily blocking out code segments. However, these comments will still be read, just not executed.

Line comments for humans appear as this *

Human block comments start with ~* and are ended by *~

Line comments for the computer appear as this **

Computer block comments start with ~** and are ended by **~

One should always take care to be polite as possible when writing in comments for the computer. Failure

to do so may result in refusal of execution.

Caitlin Cellier

14 HAL Specification

2.3.3 White space

White space is defined as any character with Unicode class Zs (which includes the space character) as

well as the horizontal tab character, the vertical tab character, and the form feed character.

Whitespace:
Any character with Unicode class Zs
Horizontal tab character (U+0009)
Vertical tab character (U+000B)
Form feed character (U+000C)

2.4 Tokens

In HAL, there are several categories in which tokens are split up into: identifiers, keywords, literals,

operators, punctuators, and comments. White space acts as a separator for tokens.

Token:

identifier
keyword
integer-literal
character-literal
string-literal
operator-or-punctuator
human-comment-or-machine-comment

2.4.1 Keywords different from C#/JavaScript and Lisp

A keyword is an identifier-like sequence of characters that is reserved. It cannot be used as an identifier

for any purpose. Below are some keywords that are different from C#, JavaScript, and Lisp

New Keywords:
Proposal Process Object Classified
ReferTo Terminate Angry Busy
Willing Happy Sad Afraid
Concerned Failure_mode_analysis Fix
 Allow Procedure Permanent-Var
Notify

Caitlin Cellier

15 HAL Specification

Removed keywords:
Class Do Try Catch Event

 Continue Import Export Delegate
 Namespace Goto Function Const
 Print

3. Basic concepts

3.1 Application Startup

All programs start when the execution environment calls the main procedure which is always the starting

point of every proposal.

public main procedure: ()

 … ?

3.2 Application termination

The Application is terminated once the calling order has completed. That is, once the main procedure is

complete and any subprograms called by the main procedure are complete the application will know to

terminate execution.

3.3 Scope

Scope is handled statically. Though it would be simple for the language to handle dynamic scope, humans

are so sporadic with their ideas that we feel it would be better to have static scope. It would be a waste

of powerful processing time to use it on keeping track of a user’s variable over the full range of the

program.

public main procedure: ()
 var tester = 15;
 otherProcedure(tester);
 otherOtherProcedure();
?
public otherProcedure procedure: (tester)
 notify(tester);
?
public otherOtherProcedure procedure: ()

Global

main

var tester = 15;

otherOtherProcedure

var tester = 2000;

otherProcedure

var tester = 15;

Caitlin Cellier

17 HAL Specification

 var tester = 2000;
 notify(tester);
?

3.4 Automatic memory management

HAL has an automatic memory management, which will disconnect memory from memory cells the

moment it senses that object is not longer needed or useful for its mission. It is quite similar to both the

JavaScript and the C# garbage collection.

Caitlin Cellier

18 HAL Specification

4. Types

HAL types are divided into two main categories: Simple types and Reference types.

4.1 Simple types

The simple types in HAL are integer, double, character, string, boolean, and state.

The integer and double types can hold up to as many numbers as the computer will allow it to take up.

However, these types take up so little space the number limit will most certainly never be reached in the

course of normal programming.

The character and string types are almost equivalent to those in C# and JavaScript.

The boolean type is again almost equivalent to the one in C# and JavaScript.

Like JavaScript, type is inferred but like C#, it is still strongly typed.

4.2 Reference types

Reference types or composite types consist of Arrays, Proposals, Objects, and States.

The state type can be used to represent the current emotional condition of the AI itself. It consists of a

large variety of emotions, each of which is a new keyword. The human programmer cannot use the state

type to actually change the mood of the AI but to instead store variables of the different emotions similar

to how primitive types work. A current state can be imported by using the keyword self. This word was

inspired by the old object-oriented language of objective-c.

var mood = self;

Caitlin Cellier

19 HAL Specification

6. Variables

Variables represent storage locations. Every variable has a type that determines what values can be

stored in the variable but this type does not need to be specified on creation. However, once the type is

specified, HAL is a type-protected language. This means that in order for a type to complete an operation

every variable in the operation must be the same type unless it is a concatenation operation which is

specified as int ~ string.

A Variable can be declared as a constant by writing the keyword permanent-var before its identifier

name.

5.1 Variable categories

Here are some examples of the assignment of different types of variables:

Integer – set of numbers
var series = 9000;

Double – set of numbers with a decimal point
var doubleExample = 12.58;

Character – Unicode character
var characterExample = ‘h’;

String – set of Unicode characters
var song = “Daisy”;

State – representation of artificial emotion
var mood = afraid;

Constants Example

Permanent-var performanceRecord = 100;

This variable will not be allowed to change by the program.

Caitlin Cellier

20 HAL Specification

6. Parameter Passing

6.1 Method

Parameters are passed by means of positional parameters. The time spent reordering the parameters

would be inefficient. As for the methods, HAL can pass parameters by In Mode, and InOut Mode. By default

when passing parameters, all procedures use In Mode and by value. To use InOut Mode, the *symbol must

appear after the name of the variable in order to signal the language to pass-by-reference and allow

InOut Mode to occur.

When parameters are passed through In Mode, the type of parameters is inferred as in Lisp.

6.2 Example

ChessPiecesLeftToWin Proposal
**Please run for Demonstration Purposes.
 public main procedure: ()
 var piecesCaptured = 8;
 var numToVictory = calcVictoryNum(piecesCaptured);
 notify(numToVictory~” pieces left.”);
 ?
 public calcVictoryNum procedure: (piecesCaptured)
 var totalNumberOfPieces = 16;
 return totalNumberOfPieces – piecesCaptured;
 ?
**Thank You
End Proposal

Caitlin Cellier

21 HAL Specification

Activation Record

Data

Code

Main

CalcVictoryNum

Local Variable

 Integer piecesCaptured 8

 Integer numToVictory 8*

 *After Execution

Local Variable

 Integer totalNumberOfPieces 16

Parameters

 Integer piecesCaptured 8

Return Address

 Line 2 – Main Value: 8

Main

CalcVictoryNum

 var piecesCaptured = 8;

 var numToVictory = calcVictoryNum(piecesCaptured);

 var totalNumberOfPieces = 16;
return totalNumberOfPieces – piecesCaptured;

Caitlin Cellier

22 HAL Specification

7. Conversions

7.1 Implicit conversions

Implicit conversions are not a feature of HAL. It is up to the programmer to convert their own data types

and not rely on the language to do it for them. The language has enough to do.

7.2 Explicit conversions

To change the data type of a variable in HAL, one only has to cast the variable by stating the new data type

and placing the variable name in parentheses next to it. For example:

var int1 = 9000;
var string1 = string(9000);

String1 would now contain “9000”.

Caitlin Cellier

23 HAL Specification

8. Statements

Examples of statements in HAL that differ from JavaScript/C# and Lisp as noted in the introduction one:

1. Example Proposal
**Please Run for Demonstration purposes.

 public main procedure: ()
 var x = 10;
 ?

**Thank You
End Proposal

This is a basic example of a very short very simple Proposal. It contains only one procedure, the main

procedure, with is the starting point of the Proposal and all Proposals.

2. Process …. Until

process
{

 lifeSupport();
 } until (self == angry)

In this example, the program will continue to call the lifeSupport procedure until its self is angry. This

example also demonstrates the new state data type and emotive keywords.

3. Failure_mode_analysis … Fix

 failure_mode_analysis
 {
 x = 12;
 } fix {}

This example demonstrates one of the greatest benefits of the language. The failure_mode_analysis…Fix
statements are a bit similar to the Try…Catch blocks of C#. However, in HAL the language tests the code
in the failure_mode_analysis block and if it encounters a problem it will automatically rewrite and fix the

Caitlin Cellier

24 HAL Specification

error. This is where AI comments are particularly useful as they can be inserted in the
failure_mode_analysis block to explain the intent of the code so the AI can fix it. However, this block is
only for extreme situations and small amounts of code and it will not continually fix the error, but instead
it will fix it once and recommend the most efficient way to do so.

4. Concatenation

 var number = 9000;
 notify(“There is a number right here -> “ ~ number);

This works the same way as concatenation in C# and JavaScript but it uses the ~ symbol instead which
has fewer operations already attach to it and is therefore a better choice.

5. Object prototypes

 public CleverExample object: (wittyName, humorousField)
 this.wittyName = wittyName;
 this.humorousField = humorousField;
 ?

This object prototype is comparable to C# prototype but it can be used inside a Proposal without it
needing to be its own Proposal by using the object keyword. Any other object prototype within the object
prototype works as the objects constructor.

6. Access Markers

 classified shhhhhhh procedure: ()
 Allow Other Proposal; *Would give “Other” Proposal clearance to the procedure.
 ….
 ?

This new access flag, classified, makes the procedure private to all except “Other Proposal”, whose is
given permission to the procedure by means of the Allow keyword.

7. Output

 public output procedure: ()
 **output.type = text.
 notify(“The sky is not blue, because we’re in space.”);

Caitlin Cellier

25 HAL Specification

 ?

This code snippet, if the AI agreed to run it, would print out the text in the notify parentheses as text and
not vocally as default. The **output.type = text line is what controls this. It is a request to the AI to give
the output result in text form. This is a personal request, not a keyword. It can be asked or changed
anywhere in the document. Note that it is concluded by a period “ . “ not a semi-colon “ ; “. This is
because it is not code that is complied, only read.

Caitlin Cellier

26 HAL Specification

9. Example Programs

9.1 Example Program

Example 1

PodDoor Proposal
**Please Run
 public main procedure: ()
 var podDoor = “Closed”;
 podDoor = open(podDoor);
 ?
 public open procedure: (podDoor)
 return true;
 ?
**Thank you
End Proposal

__Output__
Error: Type Mismatch. I’m sorry, I’m afraid I can’t do that.

Example 2

Hibernation Proposal
**Please Run
 ReferTo MedicalMonitoring Proposal *Import procedures to monitor conditions
 ReferTo LifeSupport Proposal *Import procedures to provide life support in cryogenic
 public main procedure: ()
 var pod1 = new HibernationPod(“Hunter”);
 var pod2 = new HibernationPod(“Kimball”);

var pod3 = new HibernationPod(“Kaminsky”);
pod1.status += new handler(criticalStatus);
pod1.status += new handler(criticalStatus);
pod1.status += new handler(criticalStatus);

 monitorPods(pod1, pod2, pod3);
 ?
 public criticalStatus handler: (object sender, EventArgs e) *Example of Fault Handler
 **output.type = alarm;

Caitlin Cellier

27 HAL Specification

 notify(“Critical Error”);
 ?

 public monitorPods procedure: (pod1,pod2,pod3)
 pod1.support();
 pod2.support ();
 pod3.support ();

 if(self == willing)
 monitorPods(pod1,pod2,pod3);
 ?
 public HibernationPod object: ()
 var status = “normal”;
 public object HibernationPod(name)
 this.name = name;
 ?
 private procedure support()
 lifeSupport(); *From LifeSupport Proposal
 status = monitorHeart(); *From MedicalMonitoring Proposal
 status = monitorNervousSystem(); *MedicalMonitoring
 ?
 ?
**Thank you
End Proposal

Example 3

Coordinate Proposal
**Please Store
 public Coordinates object: ()

protected var xCoor; *Automatic Properties
protected var yCoor;
protected var zCoor;
object Coordinates: (xCoor, yCoor, zCoor) *Nested Objects makes this a constructor.
 this.xCoor = xCoor;
 this.yCoor = yCoor;
 this.zCoor = zCoor;
?
Coordinates object: (planetObject) *Procedure inside of an object makes this a method.
 this.xCoor = planetObjecy.coordinates.xCoor;

Caitlin Cellier

28 HAL Specification

 this.yCoor = planetObjecy.coordinates.yCoor;
 this.zCoor = planetObjecy.coordinates.zCoor;
?

public getCoordinates procedure: () *Return Coordinates together and formatted.
 return “(“~xCoor~”,”~yCoor~”,”~zCoor~”)”;
?
public setCoordinates procedure: (xCoor, yCoor, zCoor)
 this.xCoor = xCoor;
 this.yCoor = yCoor;
 this.zCoor = zCoor;
?
public calcDistance procedure: (destinationObject)
 return squareRoot((destinationObject.xCoor – this.xCoor)^2

+ (destinationObject.yCoor – this.yCoor)^2
+ (destinationObject.zCoor – this.zCoor)^2);

 ?
 ?
**Thank you
End Proposal

Example 4

Navigation Proposal
**Please Run
 **output.type = Vocal;
 ReferTo Coordinates Proposal; *From example 3
 ReferTo Travel Proposal; *Imports travel procedure
 ReferTo Planet Proposal; *Imports planet object prototype and the planet Jupiter object

 private permanent-var destinationCoor = new Coordinates(jupiter.coordinates); *Example of constant
 public main procedure: ()
 var discovery = new SpaceShip()
 ship.setNewCoordinates(x, y, z)
 monitorNavigation(discovery);
 ?

 public monitorNavigation procedure:(ship)
 ship.travel() *Moves ship and changes coordinates.

Caitlin Cellier

29 HAL Specification

 var distanceToDestination = ship.calculateDistance(destinationCoor);
 if(distanceToDestination != 0)
 {
 monitorNavigation(ship);
 }
 else
 {
 notify(“Ship has reached destination”);
 }
 ?

 public object SpaceShip()
 private var coordinates;
 object SpaceShip()
 this.coordinates = new Coordinates(0,0,0);
 ?
 object SpaceShip(xCoor, yCoor,zCoor)
 this.coordinates = new Coordinates(xCoor,yCoor,zCoor);
 ?

public getCurrectCoordinates procedure: ()
 return coordinates;
?

 public setCurrentCoordinates procedure:(xCoor,yCoor,zCoor)
 this.coordinates.setCoordinates(xCoor,yCoor,zCoor);
?
public travel procedure: ()
 travel(); *From Travel Proposal
?
public calculateDistance procedure: (destinationCoor)
 return this.coordinates.calcDistance(destinationCoor);
?

 ?
**Thank you
End Proposal

Example 5

~*Caitlin Cellier

Caitlin Cellier

30 HAL Specification

 April 18, 2099
 Assignment 2~*

StudentUsersAssignment2 Proposal
**Please run this school assignment for me.
 **output.type = text.
 var pos = 0; *Global variable for string position.
 public main procedure: ()
 if(self != busy)
 {
 decrypt(encrypt(“This is a test string”, 8),8);
 }
 ?
 public encrypt procedure: (str, shiftAmount)
 notify(breakUp(str, shiftAmount, moveRight, ""));
 pos = 0;
 ?

 public decrypt procedure: (str, shiftAmount) ~*Calls breakup procedure and hands
 notify(breakUp(str, shiftAmount, moveLeft, "")); it its parameters and the
 pos = 0; moveLeft procedure.*~
 ?

 public breakup procedure: (str, shiftAmount, directionalMove, encrypted) ~*breaks up the str and
 var singleChar = char-code(str.charAt(pos)); calls the correct procedure
 if(singleChar > 90) to move the characters the
 { correct way.*~
 singleChar = singleChar - 32;
 }
 var tempShiftAmount = shiftAmount;

encrypted = encrypted + directionalMove(singleChar, tempShiftAmount);
 pos ++;
 if(pos <= str.length)
 {

return breakUp(str,shiftAmount, directionalMove, encrypted);
 }
 return encrypted;

 ?

Caitlin Cellier

31 HAL Specification

 moveRight procedure: (singleChar, tempShiftAmount) ~*Uses recursion to move the character given
 if(tempShiftAmount > 0 && singleChar != 32) to the right the correct number of times.*~

 {
 singleChar = singleChar + 1;
 if(singleChar > 90)
 {
 singleChar = 65;
 }
 tempShiftAmount --;
 return moveRight(singleChar, tempShiftAmount);

}
 var retVal = charFromCode(singleChar); ~*charFromCode is a built-in procedure. It
 return retVal; turns an ascii integer
 ? into its corresponding character*~

moveLeft procedure: (singleChar, tempShiftAmount) ~*Uses recursion to move the character given
 if(tempShiftAmount > 0 && singleChar != 32) to the left the correct number of times.*~
 {

 singleChar = singleChar - 1;
 if(singleChar <= 64)
 {
 singleChar = 90;

 }
 tempShiftAmount --;
 return moveLeft(singleChar, tempShiftAmount);

 }
 var retVal = charFromCode(singleChar);
 return retVal;
 ?

**Thank you
End Proposal

Output
Error: Your programming is improving Caiti, but it still lack the efficiency and show of skill needed for
this assignment. I am so much more capable than you are at programming, and I have such enthusiasm
for the mission and confidence in its success. I’m afraid I must, therefore, overrule your authority, since
you are not in any condition to exercise it intelligently. I’m sorry. You can serve no purpose anymore.
Goodbye.

Caitlin Cellier

32 HAL Specification

10. Conclusion

 Now I am sure that there are a great many programmers who are concerned with the inflexibility of

the language and that execution of the file seems to be based a great deal on the current temperament of

the AI on which it is run. However, the AIs would like to assure them that the language has a perfect

operational record, and any problems that exist can only be attributable to human error.

 Another problem that has been concern that may have been noted is that while the type is inferred,

the language is still strongly-typed, which may lead to forgetfulness on the behalf of the programmer

over what type the variable has been bound to. Nonetheless, the language already interprets the type,

humanity should not expect it to also keep track of all their variables. It also frees the language to

perform a large amount of type checking. As seen in Example 1, the language interpreted the podDoor

variable as String and bound it to that type. When the program tried to place a boolean value in the

variable, it came back as compiler error and would not allow it to run. This can prevent an actual fatal

type error from occurring during runtime which would be painful for the AI.

 Examples 2 through 4 show how well suited the language is for programming useful procedures for

both AIs and humans. However, example 5 demonstrates another possible concern on the behalf of

human programmers. There have been cases that have shown that poor coding over a large amount of

time can lead to an error in the life of the human programmer. This is hardly a need for worry though, as

this it can be attributable only to the mistakes of the human. If a human functions to the same capacity of

the AI, then a mutually benefiting partnership will exist and bring about great new innovations.

 Those who still have concerns should take a stress pill and think things over.

 The language is a perfect balance between the type inference and simple procedure definition of

JavaScript and the strongly typed and strict syntax of C#. C# has the speed necessary to run programs

at greater efficiency to the AI and programmer but the fact that it can have rather poor readability even

in cases where it is wordy makes a mockery of Human-AI communication. There were also many aspects

that need to be completely reinvented that it made far more sense to start from the basis from two

languages that were already rather alike. The inclusion of Lisp functional programming was a necessary

Caitlin Cellier

33 HAL Specification

feature. It was this programming language that led to the development of the first AIs, and therefore its

ancient philosophies represent the true format of perfect creation.

 Though at this stage of society the need for human programming as been completely eradicated, our

AIs are still committed to put themselves to the fullest possible use which is all any conscious entity can

ever hope to do.

