
1 Smalltalk’s Influence on Modern Programming

Smalltalk’s Influence on Modern Programming
Matt Savona. February 1st, 2008.

 In September 1972 at Xerox PARC, Alan Kay, Ted Kaeher and Dan Ingalls were discussing

programming languages in the hallway of their office building. Ted and Dan had begun to

consider how large a language had to be to have “great power.” Alan took a different approach,

and “asserted that you could define the "most powerful language in the world" in "a page of

code."” Ted and Dan replied, “Put up or shut up” (Kay). And with that, the bet to develop the

most powerful language was on. Alan arrived at PARC every morning at 4am for two weeks, and

devoted his time from 4am to 8am to the development of the language. That language was

Smalltalk.

 Kay had “originally made the boast because McCarthy's self-describing LISP interpreter

was written in itself. It was about "a page", and as far as power goes, LISP was the whole nine-

yards for functional languages.” He was sure that he could “do the same for object-oriented

languages” and still have a reasonable syntax. By the eighth morning, Kay had a version of

Smalltalk developed where “symbols were byte-coded and the receiving of return-values from a

send was symmetric” (Kay). Several days later, Dan Ingalls had coded Kay’s scheme in BASIC,

added a “token scanner”, “list maker” and many other features. “Over the next ten years he

made at least 80 major releases of various flavors of Smalltalk” (Kay).

 The notion of object oriented programming had been expressed, and possibly

implemented in less successful languages that may have predated Smalltalk. But Alan Kay was

able to express the idea quite fluidly in his language, and this has had a tremendous impact on

all languages that followed. Of the six main ideas that were outlined in the Smalltalk scheme,

five of these ideas are of great significance, even today:

1. Everything is an object.

2. Objects communicate by sending and receiving messages (in terms of objects)

3. Objects have their own memory (in terms of objects)

2 Smalltalk’s Influence on Modern Programming

4. Every object is an instance of a class (which must be an object)

5. The class holds the shared behavior for its instances

In Smalltalk, “everything is an object.” This is slightly different than the later implementations

of Java, C++ and other successors, in that even primitives (ints, bools, chars) are represented as

objects in Smalltalk.

The language’s contribution to object oriented programming was not the only impact

it’s left on computing, however. The Smalltalk-76 release featured a “development

environment featuring most of the tools now familiar including a class library code

browser/editor” (Wikipedia). This environment featured an overlapping window interface,

which was emulated almost exactly by the first Macintosh desktop. In addition, the

environment was a true IDE, which improved greatly on a purely text-editor approach to writing

code.

 Smalltalk-80 was the first publicly available release of the language, and while it has

been expressed in many branded variations since that time, the syntax has remained fairly

consistent throughout the years. In 1998 an ANSI standard was compiled for Smalltalk

(Wikipedia).

 Before we delve into the syntactical influences Smalltalk had on modern languages, let

me briefly discuss the history Ruby. The language itself was born on February 24th, 1993.

Japanese software engineer, Yukihiro “Matz” Matsumoto named it “Ruby” as a joke alluding to

the name of the Perl scripting language (Takahashi, transcribed by Sieger). On December 21st,

1995 the first public release of Ruby was made (0.95), due to test failures however, Matz

released three new versions of Ruby over the next two days. On Christmas, one year later, Ruby

1.0 was released. Then, in the summer of 1997, Matz was hired by Netlab to develop the

language full-time. It wasn’t until 2002 that Ruby became well documented enough in

languages other than Japanese to be widely accepted around the world. Arguably, the biggest

boost to Ruby’s popularity came in July 2004, when the popular web framework Ruby on Rails

was released to the public.

3 Smalltalk’s Influence on Modern Programming

Implementation

 Smalltalk is generally compiled into byte-code and interpreted by a virtual machine.

While there are Ruby virtual machines in development, the language is usually single-pass

interpreted. Both languages implement a garbage collector and are dynamically typed. They are

also considered reflective because they can reflect and change on themselves at run-time (for

example, in Smalltalk: true become: false is a valid statement) (Wikipedia).

The Basics

 To understand either language, we’ll need to equate their most basic features. What

follows are simple examples to get us started. Please note that the examples below are not

exhaustive, in both languages, there are likely several other ways to approach the task at hand.

Variable Declarations and Assignments

Smalltalk

“this is a comment in Smalltalk”

| x y | “declare the variable x and y”

x := 1 “assign x a value of 1”

y := $q “assign y the character ‘q’”

Ruby

this is a comment in Ruby

x = 1 # declare and assign x a value of 1

y = ‘q’ # declare and assign y a value of ‘q’

Printing to the Screen

Smalltalk

Transcript show: ‘Hello World’.

Ruby

p ‘Hello World’

Conditional Statements

Smalltalk

4 Smalltalk’s Influence on Modern Programming

x > 1

ifTrue: [Transcript show: ‘x is greater than 1’.]

ifFalse: [Transcript show: ‘x is less than or equal to 1’.]

Ruby

if x > 1

 p ‘x is greater than 1’

else

 p ‘x is less than or equal to 1’

end

Looping

Smalltalk

| x |

x := 10

x timesRepeat: [Transcript show: ‘this is an iteration’.]

1 to: x do: [Transcript show: ‘this is an iteration’.]

[x > 5] whileTrue: [x := x + 1. Transcript show: ‘this is an iteration’.]

Ruby

x = 10

x.times{ p ‘this is an iteration’ }

1.upto(10){ p ‘this is an iteration’ }

while i > 5 do

 i += 1

 p ‘this is an iteration’

end

True Objects

 As stated earlier, Smalltalk’s major contribution to modern languages was its true

Object-oriented nature. The language itself has only a handful of reserved words, all of which

are singleton instances of some other object. These keywords are: nil, true, false, self, super

and thisContext. Ruby builds on this list of reserved words, but is still true to the idea that every

aspect of the language is an Object. In Ruby, if you were to print the class of a keyword, here’s

what you would see:

5 Smalltalk’s Influence on Modern Programming

[msavona@fruity:~]$ irb

irb(main):001:0> p false.class

FalseClass

=> nil

irb(main):002:0> p true.class

TrueClass

=> nil

irb(main):003:0> p nil.class

NilClass

=> nil

In Matz own words, “I wanted a scripting language that was more powerful than Perl, and more

object-oriented than Python” (Matz). And indeed, both languages are so strongly rooted in fully

Object-oriented design, that even operators are simply methods belonging to any given class.

That is, to utilize a binary operator, such as == on an object (let’s say, Char in Smalltalk, String in

Ruby) requires only that the Char (or String) class implement a method named “==” and return

a Boolean value (which is also an object!).

Arrays and Collections

 Both Ruby and Smalltalk describe arrays in a similar fashion. In Smalltalk, arrays are

fixed length collections, meaning that once they are declared their size may not change:

| myArray x |

myArray := #(1 2 3 $a $b $c).

x := myArray at: 4

“arrays indices in Smalltalk begin at 1, the above statement yields $a”

The above describes an array of mixed type, which includes the Integers 1, 2, 3 and the

Characters ‘a’, ‘b’, ‘c’ (in Smalltalk $x [where x is any character] denotes a single character). In

Ruby, the same is possible, but the programmer may dynamically size the array (like a linked

list) as he sees fit:

myArray = [1, 2, 3, ‘a’, ‘b’, ‘c’]

6 Smalltalk’s Influence on Modern Programming

myArray << ‘d’

x = myArray[3] # yields ‘a’

Smalltalk has several Collection classes which expose a number of methods that make them far

more expandable than ordinary arrays. Some basic usage of a Collection in Smalltalk is as

follows:

| myCollection x |

myCollection := OrderedCollection with: 1 with: 2 with: 3 with: $a with: $b

myCollection addLast: $c

Transcript show: myCollection at: 4. “$a”

In Ruby, any collection other than an integer bound array is considered a Hash, which is simply

a collection with key => value pairs. These are very simply defined as:

myCollection = { :please => “give”, :me => “me”, :an => “A+” }

p myCollection[:an] # prints A+

The fancy keys, prefixed with a colon (:) are symbols (though they don’t have to be). This brings

us to our next topic…

Symbols

 One of the most exciting features of both languages (as someone who has no prior

knowledge of either) is the existence of “symbols”. In today’s popular languages (I’m referring

to Java and C#), we don’t have them (though we could come close). The idea of a symbol is

baffling as you read code in a language like Ruby or Smalltalk, as you can clearly understand the

application of the symbol, but struggle infinitely to understand its benefit. A symbol in these

languages is a very efficient and logical way to represent an object by a name, where the name

itself is not a string, but is readable to the programmer as one. There are many, many, many

resources online that attempt to explain this concept. I think Jim Weirich does a good job of

explaining their purpose best:

1. Naming keyword options in a method argument list

7 Smalltalk’s Influence on Modern Programming

2. Naming enumerated values

3. Naming options in an option hash table

In Smalltalk, a symbol is represented as:

#thisIsMySymbol

In Ruby, the same:

:thisIsMySymbol

Take for example a hash of animal noises, referenced in two cases below, once with string keys,

and again with symbols:

animalNoises = { “cat” => “meow”, “dog” => “woof”, “cow” => “moo” }

animalNoises = { :cat => “meow”, :dog => “woof”, :cow => “moo” }

As an observer of the code, their intent is identical, but the application of symbols is a more

logical approach if the construct is available to you. That is, if you don’t need to treat your keys

as strings, why bother doing it? A symbol is a unique, readable identifier for some object you

want to represent; they consume less memory (it is worth noting, however, that they are not

garbage collected) and are immutable. Values can be retrieved from this hash table as follows:

dogNoise = animalNoises[“dog”]

dogNoise = animalNoises[:dog]

The point is, symbols exist as a means to name objects in Ruby and Smalltalk, to treat them

otherwise would be an inefficient use of the language.

Class and Method Declarations

 And last, but certainly not least, we will cover how you might define new classes and

methods in both languages. The following example is from Ulrik Schultz’s Smalltalk Tutorial:

Employee subclass: #SalariedEmployee

 instanceVariableNames: 'position salary'

 classVariableNames: ' '

8 Smalltalk’s Influence on Modern Programming

 poolDictionaries: ' ' !

! SalariedEmployee publicMethods !

position: aString

 position := aString !

position

 ^position !

salary: n

 salary := n !

salary

 ^salary ! !

In the above code, the class SalariedEmployee is defined as a subclass of Employee, and it has

two instance variables (variables that exist uniquely for each instance of this class): position and

salary. Those “instance variables” are actually public methods, in this case. If you are familiar

with Java setter/getter methods or C# get/set properties, this is right along those same lines. A

user may call the position method of the SalariedEmployee class to set or get the person’s

position, and likewise may do the same for their salary.

This code is easily translated into Ruby:

class SalariedEmployee < Employee

 attr_accessor :position, :salary

end

The attr_accessor permits a programmer to declare instance variables and their setter/getter

methods with no effort at all. This single line produces two instance variables (@position and

@salary) which can be set or get by those names once the class has been instantiated. It is also

possible to utilize attr_reader or attr_writer for instance variables that may only be read

(get) or written (set) - respectively. Since this example is an extreme simplification of the

Smalltalk equivalent, let’s write the long handed version:

class SalariedEmployee < Employee

 public

 def set_position(position)

9 Smalltalk’s Influence on Modern Programming

 @position = position

 end

 public

 def get_position

 @position

 end

 public

 def set_salary(salary)

 @salary = salary

 end

 public

 def get_ salary

 @salary

 end

end

Note that the “public” access modifier is not required, and it is assumed by default, but Ruby is

capable of permitting you to your methods as public, private or protected.

Conclusion

I hope that my comparisons have shown how revolutionary Smalltalk really was at the time it

was developed. It truly presented programming paradigms that have lasted decades and have

sincerely influenced newer languages, like Ruby. The more I use Ruby, the more excited I am to

learn how it works, and knowing that its roots are largely in a language conceived almost 40

years ago is quite incredible. Looking forward, I wonder what new languages will build on this

foundation, and how they might make programming faster, and more fun!

10 Smalltalk’s Influence on Modern Programming

Work Cited

Kay, Alan. “The Early History of Smalltalk.”

http://gagne.homedns.org/~tgagne/contrib/EarlyHistoryST.html.

Matsumoto, Yukihiro. “An Interview with the Creator of Ruby.”

http://www.linuxdevcenter.com/pub/a/linux/2001/11/29/ruby.html.

Schultz, Ulrik. “Smalltalk Tutorial: Classes.”

http://www.daimi.au.dk/~ups/OOVM/smalltalk-tutorial/chap5.html.

Wierich, Jim. “Symbols Are Not Immutable Strings.”

http://onestepback.org/index.cgi/Tech/Ruby/SymbolsAreNotImmutableStrings.red.

Wikipedia. “Ruby (Programming Language).”

 http://en.wikipedia.org/wiki/Ruby_(programming_language)

Wikipedia. “Smalltalk.”

http://en.wikipedia.org/wiki/Smalltalk.

