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Pure, untyped Lambda Calculus

History


1600s - Gottfried Leibniz  
	 	 	 “Algebra of Thought”


1. Wanted to create a universal 
language in which all problems 
could be stated.


2. Wanted to find a decision method 
to solve all of those problems.


Set theory and first-order (predicate) logic 
will do for #1, at least for problems that can 
be expressed in mathematical terms. 

(Is that all problems?)


#2 poses an interesting philosophical question: 
Can one solve all problems formulated in a 
universal language?

Gottfried	Wilhelm	Leibniz

Wikipedia

Brian	May

Queen
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Lambda Calculus

History


1920s - Moses Schönfinkel — perhaps 
a student of David Hilbert — presents 
the “building blocks of logic”, a formal 
system of logic based on what we now 
call combinator functions. 


• He showed that by appropriately combining 
them one could effectively define any 
function, or, in modern terms, that they 
could support universal computation.


• He also worked out what would eventually 
become known as “Currying”, even though 
its namesake, Haskell Curry, credited 
Schönfinkel in his work.


• See https://writings.stephenwolfram.com/2020/12/where-did-

combinators-come-from-hunting-the-story-of-moses-schonfinkel/ 
for his fascinating story.

Moses	Ilyich	Schö nfinkel

stephenwolfram.com

Wikipedia

https://writings.stephenwolfram.com/2020/12/where-did-combinators-come-from-hunting-the-story-of-moses-schonfinkel/
https://writings.stephenwolfram.com/2020/12/where-did-combinators-come-from-hunting-the-story-of-moses-schonfinkel/
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Lambda Calculus

History


1928 - David Hilbert and Wilhelm 
Ackermann update Liebniz’s 
philosophical question with their 
Decision Problem: 


• Based on the idea of universal 
computation, they asked…


• Is there an algorithm that takes as input a 
description of a formal language and a 
mathematical statement expressed in that 
language and outputs true or false 
depending on the mathematical validity of 
the statement?


• Well… is there?

David	Hilbert

Wikipedia

Wilhelm	Ackermann

Wikipedia
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Lambda Calculus

History


Consider the Decision Problem 
question.


• Is there an algorithm that takes as input a 
description of a formal language and a 
mathematical statement expressed in that 
language and outputs true or false 
depending on the mathematical validity of 
the statement?


What’s an algorithm?

• An effective or computable procedure. 

• An effectively calculable function.

• A decidable predicate.

• A recipe for solving a problem.


• How does one express an algorithm?
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Lambda Calculus

History


Consider the Decision Problem 
question.


• Is there an algorithm that takes as input a 
description of a formal language and a 
mathematical statement expressed in that 
language and outputs true or false 
depending on the mathematical validity of 
the statement?


What’s an algorithm?

• An effective or computable procedure. 

• An effectively calculable function.

• A decidable predicate.

• A recipe for solving a problem.


• How does one express an algorithm?

‣ mathematically:	 Lambda Calculus

Alonzo	Church

Wikipedia
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Lambda Calculus

History


Consider the Decision Problem 
question.


• Is there an algorithm that takes as input a 
description of a formal language and a 
mathematical statement expressed in that 
language and outputs true or false 
depending on the mathematical validity of 
the statement?


What’s an algorithm?

• An effective or computable procedure. 

• An effectively calculable function.

• A decidable predicate.

• A recipe for solving a problem.


• How does one express an algorithm?

‣ mathematically:	 Lambda Calculus

‣ mechanically:	 Turing Machine

Alan	Turing

Godrey	Argent	Studio,	via	The	Royal	Society
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Lambda Calculus

History


1936 - Church and Turing 
independently answer the 
Decision Problem question: No.


• Church’s Theorem

‣ uses the Lambda Calculus as a model for 

algorithms / universal computation.


• Turing’s Proof

‣ uses a Turing Machine as a model for 

algorithms / universal computation.


• Their conclusion: 
There is no algorithm that takes as input a 
description of a formal language and a 
mathematical statement expressed in that 
language and outputs true or false 
depending on the mathematical validity of 
the statement.
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Lambda Calculus

History


1936 - Church and Turing 
independently answer the 
Decision Problem question: No.


• Church’s Theorem and Turing’s Proof state:


• There is no algorithm that takes as input a 
description of a formal language and a 
mathematical statement expressed in that 
language and outputs true or false 
depending on the mathematical validity of 
the statement.


• Their proofs of the undecidability of the Decision 
Problem involve, among other things, Cantor’s 
diagonalization argument and the halting problem 
(the idea that it’s possibly impossible to prove that a 
given algorithm terminates).
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A Fun Aside: The Halting Problem

What’s that about proving termination being possibly impossible?


	 	 	 	   Surely, I must be joking.


Imagine the following program:

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}
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A Fun Aside: The Halting Problem

What’s that about proving termination being possibly impossible?


	 	 	 	   Surely, I must be joking.


Imagine the following programs:

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}

trouble(p) = function {

  if not halts(p,p)

    return TRUE

  else

    loop forever

  endif 

}

This halts and returns true if the 
passed-in program does not halt 
when applied to itself, and it loops 
forever (i.e., does not halt) otherwise.


Trouble indeed.
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A Fun Aside: The Halting Problem

What’s that about proving termination being possibly impossible?


	 	 	 	   Surely, I must be joking.


Imagine the following programs:


What happens when we call trouble(trouble)?

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}

trouble(p) = function {

  if not halts(p,p)

    return TRUE

  else

    loop forever

  endif 

}
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A Fun Aside: The Halting Problem

What’s that about proving termination being possibly impossible?


	 	 	 	   Surely, I must be joking.


Imagine the following programs:


What happens when we call trouble(trouble) ?

It evaluates halts(trouble,trouble)

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}

trouble(p) = function {

  if not halts(p,p)

    return TRUE

  else

    loop forever

  endif 

}
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A Fun Aside: The Halting Problem

What’s that about proving termination being possibly impossible?


	 	 	 	   Surely, I must be joking?


Imagine the following programs:


What happens when we call trouble(trouble) ?

It evaluates halts(trouble,trouble)  There are two possibilities:

(1) it returns TRUE.	 Not TRUE is FALSE so loop forever, meaning do not halt.

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}

trouble(p) = function {

  if not halts(p,p)

    return TRUE

  else

    loop forever

  endif 

}
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A Fun Aside: The Halting Problem

What’s that about proving termination being possibly impossible?


	 	 	 	   Surely, I must be joking?


Imagine the following programs:


What happens when we call trouble(trouble) ?

It evaluates halts(trouble,trouble)  There are two possibilities:

(1) it returns TRUE.	 Not TRUE is FALSE so loop forever, meaning do not halt.

(2) it returns FALSE.	 Not FALSE is TRUE so return TRUE, meaning it halts.


What?

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}

trouble(p) = function {

  if not halts(p,p)

    return TRUE

  else

    loop forever

  endif 

}
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A Fun Aside: The Halting Problem

What’s that about proving termination being possibly impossible?


	 	 	 	   Surely, I must be joking…


Imagine the following programs:


What happens when we call trouble(trouble) ?

It evaluates halts(trouble,trouble)  There are two possibilities:

(1) it returns TRUE.	 Not TRUE is FALSE so loop forever, meaning do not halt.

(2) it returns FALSE.	 Not FALSE is TRUE so return TRUE, meaning it halts.

In other words, if halts(trouble,trouble) halts then it doesn’t, and if 
halts(trouble,trouble) doesn’t halt then it does. It halts and loops at the same time.

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}

trouble(p) = function {

  if not halts(p,p)

    return TRUE

  else

    loop forever

  endif 

}



17

A Fun Aside: The Halting Problem

What’s that about proving termination being possibly impossible?


	 	 	 	   I’m not joking. And don’t call me Shirley.


Imagine the following programs:


What happens when we call trouble(trouble) ?

It evaluates halts(trouble,trouble)  There are two possibilities:

(1) it returns TRUE.	 Not TRUE is FALSE so loop forever, meaning do not halt.

(2) it returns FALSE.	 Not FALSE is TRUE so return TRUE, meaning it halts.

In other words, if halts(trouble,trouble) halts then it doesn’t, and if 
halts(trouble,trouble) doesn’t halt then it does. It halts and loops at the same time.

halts() is a contradiction. Contradictions cannot exist. Therefore, by our own 
reasoning,  halts() cannot exist and promptly vanishes in a puff of logic.

halts(p,i) = function {

  if program p halts on input i

    return TRUE

  else

    return FALSE

  endif 

}

trouble(p) = function {

  if not halts(p,p)

    return TRUE

  else

    loop forever

  endif 

}
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Lambda Calculus

History


1936 - Church and Turing 
independently answer the 
Decision Problem question: No.


• Church-Turing Thesis: 

Lambda Calculus == Turning Machine


• Turing’s 1936 paper:

“Entscheidungsproblem” is “Decision Problem” in German.
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Lambda Calculus

History


1940s - Stephen Kleene

• Church’s student.


• Showed the Lambda Calculus to be a 
universal computing language.


• Worked on recursion theory and 
computable functions.


• Described automata models with a mathematical 
notation called regular sets, which we often call 
Regular Expressions


‣ A RegEx is a string that describes a set of 
other strings according to certain syntax rules.


‣ A feature in many programming languages.


‣ Used to specify grammar formalities.


‣ Basis in/of Formal Languages and Automata Theory

Stephen	Cole	Kleene

Wikipedia
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Lambda Calculus

History


1940s and 1950s - Haskell Curry

• Extended Moses Schönfinkel’s work in 

Combinatory Logic.


• Worked to show that Combinatory Logic 
could provide a foundation for mathematics.


• Discovers/develops the Y combinator.


• Combinatory Logic is the foundation for many 
functional programming languages


‣ Haskell is one of them.


‣ Many (most?) other functional languages 
also stem from the Lambda Calculus and 
Combinator Theory.


‣ The earliest one is . . .

Haskell	Brooks	Curry

Wikipedia
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Lambda Calculus

History


1950s - John McCarthy invents LISP

• LISt Processing language


• Designed at MIT by John McCarthy


• AI research needed a language to process 
data in lists (rather than arrays) and also


• Symbolic computation (rather than 
numeric).


• Only two data types: atoms and lists


• Syntax is based on the Lambda Calculus

John	McCarthy

New	York	Times

Representing the lists (A B C D)
and (A (B C) D (E (F G)))
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Lambda Calculus

History


1960s through 1980s - 

More functional Languages


• ISWIM - Peter Landin (“syntactic sugaring of the Lambda Calculus”)


• ML


• Miranda


• Haskell


• Erlang


• Scheme


• F#


• … and many others
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Reduction and Functional Programming

A functional program consists of expressions and rewrite rules.


An expression, E, represents both algorithm and input. (Reflect on 
that for a moment: There is no difference between code and data.)
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Reduction and Functional Programming

A functional program consists of expressions and rewrite rules.


An expression, E, represents both algorithm and input. (Reflect on 
that for a moment: There is no difference between code and data.)


Remember the von Neumann Architecture:
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Reduction and Functional Programming

A functional program consists of expressions and rewrite rules.


An expression, E, represents both algorithm and input. (Reflect on 
that for a moment: There is no difference between code and data.)


Reduction happens when we substitute a part of E (let’s call 
that P) with another part (Pʹ)  according to the rewrite rules.


We repeat this process of reduction until the resulting expression 
cannot be reduced any further (i.e., it contains no more parts that 
can be reduced). This results in the Normal Form of E and 
represents the output of the functional program.


Let’s do an example using basic math.
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Reduction and Functional Programming

A functional program consists of expressions and rewrite rules.


Expression: 	 	 (7 + 4) • (8 + 5 • 3)


Rewrite rules: 	 addition and multiplication in math


	 	 	 	 (7 + 4) • (8 + 5 • 3)	 ➛	 11 • (8 + 5 • 3)

	 	 	 	 	 	 	 	 	 	 ➛	 11 • (8 + 15)

	 	 	 	 	 	 	 	 	 	 ➛	 11 • (23)

	 	 	 	 	 	 	 	 	 	 ➛	 253


Rewriting the expression using substitution, following the rules of 
addition and multiplication, yields the normal form (result).


By the way, we didn’t need to do reductions in this order.

Normal form
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Reduction and Functional Programming

A functional program consists of expressions and rewrite rules.


Expression: 	 	 (7 + 4) • (8 + 5 • 3)


Rewrite rules: 	 addition and multiplication in math


	 	 	 	 (7 + 4) • (8 + 5 • 3)	 ➛	 (7 + 4) • (8 + 15)

	 	 	 	 	 	 	 	 	 	 ➛	 11 • (8 + 15)

	 	 	 	 	 	 	 	 	 	 ➛	 11 • (23)

	 	 	 	 	 	 	 	 	 	 ➛	 253


Reduction systems often satisfy the Church-Rosser property, which 
states that the normal form can be obtained regardless of the order 
in which reductions are performed (so long as they obey the rewrite 
rules).


Reduction works with symbolic systems too.

Normal form
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Reduction and Functional Programming

A functional program consists of expressions and rewrite rules.


Expression: 	 first(sort(append(‘dog’,‘rabbit’) (sort((‘mouse’,‘cat’)))))


Rewrite rules: list operations
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Reduction and Functional Programming

A functional program consists of expressions and rewrite rules.


Expression: 	 first(sort(append(‘dog’,‘rabbit’) (sort((‘mouse’,‘cat’)))))


Rewrite rules: list operations


	 	 	 	 first(sort(append(‘dog’,‘rabbit’) (sort((‘mouse’,‘cat’)))))


	 	 	 	 ➛	 first(sort(append(‘dog’,‘rabbit’) (‘cat’,‘mouse’)))


	 	 	 	 ➛	 first(sort(‘dog’,‘rabbit’,‘cat’,‘mouse’))


	 	 	 	 ➛	 first(‘cat’,‘dog’,‘mouse’,‘rabbit’)


	 	 	 	 ➛	 ‘cat’


Alonzo Church generalized this.

Normal form
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Lambda Calculus

The smallest universal programming language in the world.


Two keywords: “λ” and “.”


Why λ?


According to Dutch logician and lambda calculus scholar Henk 
Barendregt:


[1] Russell and Whitehead, Principia Mathematica, vol. 1 and 2, Cambridge University Press, 1910–13.

     1    
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Lambda Calculus

The smallest universal programming language in the world.


Two keywords: “λ” and “.”


One transformation rule: Substitution


One function definition scheme:


<expression>  := <function> | <application> | <var>

<function>    := λ <var> . <expression>

<application> := <expression> <expression>

              := (<expression> <expression>)

<var>         := a, b, c, ... , z  
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Lambda Calculus

The smallest universal programming language in the world.


Two keywords: “λ” and “.”


One transformation rule: Substitution


One function definition scheme:


<expression>  := <function> | <application> | <var>

<function>    := λ <var> . <expression>

<application> := <expression> <expression>

              := (<expression> <expression>)

<var>         := a, b, c, ... , z  

By the way, that is 7 productions (if we assume a range for the vars). 
That’s all we need for computing. Really. That’s it. Other languages 
have hundreds or thousands of productions in their grammar. 

We have seven.
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Lambda Calculus

The smallest universal programming language in the world.


<expression>  := <function> | <application> | <var>

<function>    := λ <var> . <expression>

<application> := <expression> <expression>

              := (<expression> <expression>)

<var>         := a, b, c, ... , z


λ z . E

Read it as “Lambda z dot E”.


Lambda functions are abstractions of computation.
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Lambda Calculus

The smallest universal programming language in the world.


<expression>  := <function> | <application> | <var>

<function>    := λ <var> . <expression>

<application> := <expression> <expression>

              := (<expression> <expression>)

<var>         := a, b, c, ... , z


λ z . E

Read it as “Lambda z dot E”.


Lambda functions are abstractions of 

fundamental, universal computation.
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Lambda Calculus

The smallest universal programming language in the world.


<expression>  := <function> | <application> | <var>

<function>    := λ <var> . <expression>

<application> := <expression> <expression>

              := (<expression> <expression>)

<var>         := a, b, c, ... , z


λ z . Eanonymous function

variable/parameter 

of the function

expression
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Lambda Calculus

The smallest universal programming language in the world.


<expression>  := <function> | <application> | <var>

<function>    := λ <var> . <expression>

<application> := <expression> <expression>

              := (<expression> <expression>)

<var>         := a, b, c, ... , z


λ z . E

abstraction

abstraction combinator param

param

param

anonymous function

variable/parameter 

of the function

expression
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Lambda Calculus

The smallest universal programming language


λ z . E

Example:	 	 f(x) = x2 + 2•x + 1


	 	 	 	 	 g(x) = x2 + 2•x + 1


	 	 	 	 	    ⋮       It doesn’t matter what we call it…


	 	 	 	 	 whatever(x) = x2 + 2•x + 1


	 	 	 	 	    ⋮       … so let’s call it …


	 	 	 	 	 lambda(x) = x2 + 2•x + 1


	 	 	 	 	    ⋮       … and write it like this:


	 	 	 	 	 λ x . x2 + 2•x + 1
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Lambda Calculus

The smallest universal programming language


λ z . E

Example:	 	 f(x) = x2 + 2•x + 1		 	 f(3) = 16


	 	 	 	 	 g(x) = x2 + 2•x + 1 	 	 g(3) = 16


	 	 	 	 	 λ x . x2 + 2•x + 1	 	 	 (λ x . x2 + 2•x + 1) (3) = 16

	 	 	 	 	 	 	 	 	 	 	 	 Wait, what?


An aside about parameters: 

	 	 Formal parameters are declared in the function.

	 	 Actual parameters are what’s used when calling the function.
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Lambda Calculus

The smallest universal programming language


λ z . E

	 	 	 	 	 f(x) = x2 + 2•x + 1	 	 f(3) = 16


	 	 	 	 	 g(x) = x2 + 2•x + 1 	 	 g(3) = 16


	 	 	 	 	 λ x . x2 + 2•x + 1	 	 	 (λ x . x2 + 2•x + 1) (3) = 16

We have a function called f

that takes x as a parameter 

for the expression x2 + 2x + 1.

We have a function called g

that takes x as a parameter 

for the expression x2 + 2•x + 1.

We can invoke f and g 
by name.
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Lambda Calculus

The smallest universal programming language


λ z . E

	 	 	 	 	 f(x) = x2 + 2•x + 1	 	 f(3) = 16


	 	 	 	 	 g(x) = x2 + 2•x + 1 	 	 g(3) = 16


	 	 	 	 	 λ x . x2 + 2•x + 1	 	 	 (λ x . x2 + 2•x + 1) (3) = 16

We have a function called f

that takes x as a parameter 

for the expression x2 + 2x + 1.

We have a function called g

that takes x as a parameter 

for the expression x2 + 2•x + 1.

We have an anonymous function

that takes x as a parameter in the 

expression x2 + 2•x + 1.


Since it’s anonymous we can’t 
invoke it by name so we have to 
give its code.

We can invoke f and g 
by name.

Imagine this as a function in some programming language.
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Lambda Calculus

The smallest universal programming language


Imagine this as a function in some any programming language.


f(x) = x2 + 2x + 1


function f(x)

begin

   return (x*x)+(2*x)+1

end


function g(x) {

   return (x*x)+(2*x)+1;

}


int whatever(x) {

  return (x*x)+(2*x)+1;

}


fun f x = (x*x)+(2*x)+1;


lambda(x): 		 	 	 	 	 	 	 	 

return (x*x)+(2*x)+1;


λ x . (x*x)+(2*x)+1 (λ x . x2 + 2•x + 1) (3) = 16

f(3) = 16

We can write a function that takes 
x as a parameter for the 
expression x2 + 2•x + 1 in 

any programing language … 


… including a universal language 
like the Lambda Calculus.


To evaluate the function (to 
reduce the expression to its 
normal form) we need 
substitution.
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Lambda Calculus

Substitution


(λ x . x2 + 2•x + 1) (3) = 16


“Substitute 3 for x in x2 + 2•x + 1”  is written

(x2 + 2•x + 1) [3/x] 


Let’s try it:


(λ x . x2 + 2 • x + 1) (3)


   32 + 2•3 + 1	= 16

     9 + 2•3 + 1	= 16

         9 + 6 + 1	= 16

	 	 	 	  16	= 16 Normal form
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Lambda Calculus

Substitution


The general case:


(λ z . E)N = E[N/z]

“To evaluate λ z . E applied to N, substitute N for z in E.”

That word — “applied” — seems important.
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Lambda Calculus

What’s Application?


(λ z . E)N 		 = E[N/z]

<expression>  := <function> | <application> | <var>

<function>    := λ <var> . <expression>

<application> := <expression> <expression>

              := (<expression> <expression>)

<var>         := a, b, c, ... , z  

<var>

<expression> “Substitute N for z in E.”
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Lambda Calculus

What’s Application?


(λ z . E)N 		 = E[N/z]
<var>

<expression>

<function>

“Substitute N for z in E.”

<expression>  := <function> | <application> | <var>

<function>    := λ <var> . <expression>

<application> := <expression> <expression>

              := (<expression> <expression>)

<var>         := a, b, c, ... , z  
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Lambda Calculus

What’s Application?


(λ z . E)N 		 = E[N/z]
<var>

<expression>

<function>
<expression>

“Substitute N for z in E.”

<expression>  := <function> | <application> | <var>

<function>    := λ <var> . <expression>

<application> := <expression> <expression>

              := (<expression> <expression>)

<var>         := a, b, c, ... , z  
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Lambda Calculus

What’s Application?


(λ z . E)N 		 = E[N/z]
<var>

<expression>

<function>
<expression> <expression>

“Substitute N for z in E.”

<expression>  := <function> | <application> | <var>

<function>    := λ <var> . <expression>

<application> := <expression> <expression>

              := (<expression> <expression>)

<var>         := a, b, c, ... , z  
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Lambda Calculus

What’s Application?


(λ z . E)N 		 = E[N/z]
<var>

<expression>

<function>
<expression> <expression>

<application>

“Substitute N for z in E.”

There’s that word again.

<expression>  := <function> | <application> | <var>

<function>    := λ <var> . <expression>

<application> := <expression> <expression>

              := (<expression> <expression>)

<var>         := a, b, c, ... , z  
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Lambda Calculus

Application


(E1 E2)

Read it as “E1 applied to E2.”


E1 and E2 are expressions.

E1 and E2 are sometimes Combinators, which are


descendants of Moses Schönfinkel’s combinator functions.


<expression>  := <function> | <application> | <var>

<function>    := λ <var> . <expression>

<application> := <expression> <expression>

              := (<expression> <expression>)

<var>         := a, b, c, ... , z  
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Lambda Calculus

Application


(E1 E2)

Read it as “E1 applied to E2.”


Think of it like a tree:

E1

App

E2
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Lambda Calculus

Application


(E1 E2)

Read it as “E1 applied to E2.”


Think of it like a tree:


“The E1 algorithm applied to E2 input.”

E1

App

E2

algorithm input
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Lambda Calculus

Application


(λ x . x2 + 2•x + 1) (3)


Think of it like a tree:


This is the “algorithm” (λ x . x2 + 2•x + 1) applied to the input 3.

λ x . x2 + 2•x + 1

App

3

Wait a second! Where did this “3” come from?
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Lambda Calculus

Wait a second!


(λ x . x2 + 2•x + 1) (3)


Think of it like a tree:


λ x . x2 + 2•x + 1

App

3

<expression>  := <function> | <application> | <var>

<function>    := λ <var> . <expression>

<application> := <expression> <expression>

              := (<expression> <expression>)

<var>         := a, b, c, ... , z  

There is no “3” in the syntax. What’s going on here?
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Lambda Calculus

Wait a second!


(λ x . x2 + 2•x + 1) (3)


Think of it like a tree:


λ x . x2 + 2•x + 1

App

3̅

It’s okay. “3” is syntactic sugar for a Church numeral.

Let	0̅	=	λf	x	.	x

Let	1̅	=	λf	x	.	(f	x)

Let	2̅	=	λf	x	.	(f	(f	x))

Let	3̅	=	λf	x	.	(f	(f	(f	x)))

								⋮

Let	n̅	=	λf	x	.	(fn.	x)
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Lambda Calculus

Application


(λ x . x2 + 2•x + 1) (3)


Think of it like a tree:


This is (λ x . x2 + 2•x + 1) applied to the input λf x . (f (f (f x))) .

λ x . x2 + 2•x + 1

App

λf x . (f (f (f x)))
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Lambda Calculus

Application is left-associative


E1 E2 E3 = (E1 E2) E3

Think of it like a tree:

E1

App

E2

App

E3
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Lambda Calculus

Application is left-associative


E1 E2 E3 = (E1 E2) E3

Think of it like a tree:

E1

App

E2

App

E3

algorithm input

inputalgorithm
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Application is the essence of functional programming.


Remember, each expression can be code or data.

In this example, we’re applying the E1 “code” to the E2 input, which 
results in (reduces to) a partially evaluated intermediate expression 
that acts like “code” when applied to  E3.


This is the essence of functional programming.

E1

App

E2

App

E3

algorithm input

inputalgorithm
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Lambda Calculus

Application


(λ x . x2 + 2•x + 1) (3)


Think of it like a tree:


To perform application — that is, to execute the fundamental 
operation of computing — we use substitution to power 
reduction.

λ x . x2 + 2•x + 1

App

3̅
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Back to Substitution


The general case:


(λ z . E)N = E[N/z]

“To evaluate λ z . E applied to N, substitute N for z in E.”

I told you it was important.
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Lambda Calculus

Back to Substitution


The general case:


(λ z . E)N = E[N/z]

“To evaluate λ z . E applied to N, substitute N for z in E.”


(λ x . x2 + 2•x + 1) (3)

(x2 + 2•x + 1) [3/x] 

Substitution

binds actual parameter 3 
to formal parameter x
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Lambda Calculus

Back to Substitution


The general case:


(λ z . E)N = E[N/z]

“To evaluate λ z . E applied to N, substitute N for z in E.”


(λ x . x2 + 2•x + 1) (3)

(x2 + 2•x + 1) [3/x] 

Note: When binding an actual parameter (3) to a 
formal parameter (x), we remove formal parameter 
from the resulting expression.

Substitution

binds actual parameter 3 
to formal parameter x
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Lambda Calculus

Back to Substitution


The general case:


(λ z . E)N = E[N/z]

“To evaluate λ z . E applied to N, substitute N for z in E.”


(λ x . x2 + 2•x + 1) (3)

(x2 + 2•x + 1) [3/x] 


   32 + 2•3 + 1

     9 + 2•3 + 1

         9 + 6 + 1

	 	 	 	  16

Reductions

Normal form

}
Substitution

binds actual parameter 3 
to formal parameter x
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Substitution powers the Beta Reduction

Substitution is our model of computation.


(λ z . E)N = E[N/z]

“To evaluate λ z . E applied to N, substitute N for z in E.”


(λ x . x2 + 2•x + 1) (3)

(x2 + 2•x + 1) [3/x] 


	 	 	 	 	 	 	 	 	 ➛  32 + 2•3 + 1

	 	 	 	 	 	 	 	 	 ➛    9 + 2•3 + 1

	 	 	 	 	 	 	 	 	 ➛        9 + 6 + 1


	 	 	 	         16

β-Reductions

β➛
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Lambda Calculus

Handling Parameters / Partial Evaluation


(λ x . λ y . (x y) ) q

(λ y . (x y)) [q/x] 

	 	 ➛ λ y . (q y)


Note the shorthand: λ x . λ y can be written λ x λ y or λ x y. 

In any case, it represents the same anonymous function that takes 
two parameters: x and y and returns (x y). In terms of a 
programming language, it would be like this function… 

	 	 	 	 	 	 	 	 function λ(x,y)

	 	 	 	 	 	 	 	 begin

	 	 	 	 	 	 	 	    return (x y)

	 	 	 	 	 	 	 	 end


called with only one parameter, q. The best we can do is evaluate the 
part that we have, noting that the return value will be (q y) and that 
we’re still looking for the second parameter, y. 

This is partial evaluation.

β-Reduction

(λ x y . (x y) ) q

(λ y . (x y)) [q/x] 

	 	 ➛ λ y . (q y)
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Handling Parameters / Full Evaluation


(λ x . λ y . (x y) ) q r

(λ y . (x y)) [q/x] 

	 	 ➛ λ y . (q y) r

	 	 (q y) [r/y]

	 	 ➛ (q r)


In terms of a programming language… 

	 	 	 	 	 	 	 	 function λ(x,y)

	 	 	 	 	 	 	 	 begin

	 	 	 	 	 	 	 	    return (x y)

	 	 	 	 	 	 	 	 end


called with both parameters, q and r, returning (q r).

β-Reduction

(λ x y . (x y) ) q r

(λ y . (x y)) [q/x] 

	 	 ➛ λ y . (q y) r

	 	 (q y) [r/y]

	 	 ➛ (q r)


β-Reduction
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Lambda Calculus

Functions as Parameters


((λ x . λ y . y x) 3 ) succ

(λ y . y x) [3/x]

(λ y . y 3) succ


(y 3) [succ/y]

succ 3


4


Assume succ is the successor function:  λn f x . n f (f x)


The expression at the top applies the second argument to the first. 

In this case, it applies successor to 3.


We can use functions as parameters!

β➛

β➛

β➛



68

Lambda Calculus

Functions as Parameters


((λ x . λ y . y x) 3 ) pred

(λ y . y x) [3/x]

(λ y . y 3) pred


(y 3) [pred/y]

pred 3


2


Assume pred is the predecessor function.


The expression at the top applies the second argument to the first. 

In this case, it applies predecessor to 3.


We can use functions as parameters! So cool.

β➛

β➛

β➛



69

Lambda Calculus

Functions as Parameters


((λ f . (λ x . (f (f x)))) sqr ) 3

(λ x . (f (f x)))) [sqr/f]

(λ x . (sqr (sqr x))) 3


(sqr (sqr x)) [3/x]

(sqr (sqr 3))


(sqr 9)

81


Assume sqr is the square function.


The expression at the top applies the first argument to the second 
argument twice. In this case, it applies sqr to (sqr 3).


This is the basis of functional programming.

β➛

β➛

β➛

β➛



x
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Lambda Calculus

Parameter Grouping and Partial Evaluation


(λ a . λ m . m a) (q q)

λ m . m a [(q q)/a]


λ m . m (q q)


We need to be careful with parentheses grouping. Note that there is 
only one parameter here: (q q). Once we substitute/bind (q q) for/to 
a in λ m . m a and beta reduce, there are no more parameters to 
process so we have to stop with this partial evaluation.


But why not continue?	 	 λ m . m (q q)

	 	 	 	 	 	 	 	 	 m[(q q)/m]

	 	 	 	 	 	 	 	 	 	 (q q)


Because the parameter (q q) was already associated with a in the first 
beta reduction. We’re not allowed to use it a second  time.

β➛

β➛
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Lambda Calculus

Parameter Grouping and Partial Evaluation


(λ a . λ m . m a) (q q)

λ m . m a [(q q)/a]


λ m . m (q q)


Why not continue?	 	 	 λ m . m (q q)

	 	 	 	 	 	 	 	 	 m[(q q)/m]

	 	 	 	 	 	 	 	 	 	 (q q)


Because the parameter (q q) was already associated with a in the first 
beta reduction. We’re not allowed to use it a second  time. Think of a 
function in a programming language:


You can’t take one actual parameter and use it for both formal 
parameters. That’d be madness!

β➛

β➛ Stop here.

function λ(x,y)

begin

  return (x y)

end

x
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More on Partial Evaluation


Assume we have a plus operation as conventionally defined. (We 
don’t, but that’s not the point right now.) 


(λ a . λ m . a + m) (3)

= (λ a m . a + m) (3)

λ m . a + m [3/a]


λ m . 3 + m


At this point we have a partially evaluated function that can best be 
called “add3”. Whatever parameter we eventually pass into it will 
have 3 added to it and the result (normal form) returned.


(λ m . 3 + m) (4)

3 + m [4/m]


3+4

7


β➛

β➛
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Just One More on Partial Evaluation


(λ a . λ m . a + m) (3)

= (λ a m . a + m) (3)

λ m . a + m [3/a]


λ m . 3 + m


At this point we have a partially evaluated function that can best be 
called “add3”. But we cannot assume that the second parameter will 
also be 3 and beta-reduce it to 6. That would be madness! And it 
illustrates why we can use parameters only once.

β➛
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A Mystery Function


λ x . x

or


λ a . a

or


λ q . q


What happens when we apply it to something?


(λ x . x) E
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Lambda Calculus

A Mystery Function


λ x . x

or


λ a . a

or


λ q . q


What happens when we apply it to something?


(λ x . x) E

x [E/x]


Eβ➛
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Lambda Calculus

A Mystery Function


λ x . x

or


λ a . a

or


λ q . q


What happens when we apply it to something else?


(λ a . a) (pred)

a [pred/a]


pred
β➛
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Lambda Calculus
Identity Function and Alpha-equivalence


λ x . x

or


λ a . a

or


λ q . q


This is the identity function. Let’s call it “I” for short.


Note that we can rename variables if we’re careful* about not 
changing the meaning of the expression. 

This is called alpha equivalence.     We say   λ x . x     λ a . a


*There’s much more to consider when renaming variables, like which ones are free 
and which ones are bound, and making sure the free ones stay free.

α=
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Lambda Calculus

Free and Bound Variables


Free variables are “unbound” or “global” in the sense that they are 
not in the scope of the λ function. Bound variables are those that are 
used in the expression and passed-in as a var/parameter.


Consider the I combinator, the identity function.


I ≡ λ x . x


The variable x is bound because it’s a parameter 
used in the expression.


Combinators are λ functions with no free variables.

We’ve finally caught up to where Schönfinkel was 
over 100 years ago.
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Lambda Calculus

Free and Bound Variables


Free variables are “unbound” or “global” in the sense that they are 
not in the scope of the λ function. Bound variables are those that are 
used in the expression and passed-in as a var/parameter.


(  λ   x . x  y  )


(  λ   y . x  y  )
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Lambda Calculus

Free and Bound Variables


Free variables are “unbound” or “global” in the sense that they are 
not in the scope of the λ function. Bound variables are those that are 
used in the expression and passed-in as a var/parameter.


(  λ   x . x  y  )


(  λ   y . x  y  )

freebound
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Lambda Calculus

Free and Bound Variables


Free variables are “unbound” or “global” in the sense that they are 
not in the scope of the λ function. Bound variables are those that are 
used in the expression and passed-in as a var/parameter.


(  λ   x . x  y  )


(  λ   y . x  y  )

freebound



82

Lambda Calculus

Free and Bound Variables


	 	 	 	 	 	 	 Free Variables


	 	 	 	 	 	 	 FV(z) 	 	 	 = {z}


	 	 	 	 	 	 	 FV(E1  E2)		 = FV(E1) ∪ FV(E2)


	 	 	 	 	 	 	 FV(λz.E)	 	 = FV(E) ∖ {z}


	 	 	 	 	 	 	 Bound Variables


	 	 	 	 	 	 	 BV(z) 		 	 = ∅


	 	 	 	 	 	 	 BV(E1  E2)		 = BV(E1) ∪ BV(E2)


	 	 	 	 	 	 	 BV(λz.E)	 	 = BV(E) ∪ {z}
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Lambda Calculus

Free and Bound Variables


Free variables are “unbound” or “global” in the sense that they are 
not in the scope of the λ function. Bound variables are those that are 
used in the expression and passed-in as a var/parameter.


(λ x . λ y . (x y) ) q


?
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Lambda Calculus

Free and Bound Variables


Free variables are “unbound” or “global” in the sense that they are 
not in the scope of the λ function. Bound variables are those that are 
used in the expression and passed-in as a var/parameter.


(λ x . λ y . (x y) ) q


Both x and y are bound.
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Lambda Calculus

Free and Bound Variables


Free variables are “unbound” or “global” in the sense that they are 
not in the scope of the λ function. Bound variables are those that are 
used in the expression and passed-in as a var/parameter.


(λ x . (y x) ) q


?
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Lambda Calculus

Free and Bound Variables


Free variables are “unbound” or “global” in the sense that they are 
not in the scope of the λ function. Bound variables are those that are 
used in the expression and passed-in as a var/parameter.


(λ x . (y x) ) q


Only x is bound. The variable y is free.


function λ(x)

begin

  return (y x) // y is unbound/global

end
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Lambda Calculus

Free and Bound Variables


Free variables are “unbound” or “global” in the sense that they are 
not in the scope of the λ function. Bound variables are those that are 
used in the expression and passed-in as a var/parameter.


(λ x . (y x) ) q


Only x is bound. The variable y is free.


We are allowed to rename bound variables. It’s like renaming the 
local variables inside of a function. That’s fine. But if you rename 
globals you use inside your function you may will break things.

function λ(x)

begin

  return (y x) // y is unbound/global

end
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Free and Bound Variables


Free variables are “unbound” or “global” in the sense that they are 
not in the scope of the λ function. Bound variables are those that are 
used in the expression and passed-in as a var/parameter.


(λ x . (y x) ) q


Only x is bound. The variable y is free. We can rename bound vars.


(λ x . (y x) ) q      (λ a . (y a) ) q


We cannot rename free vars.


(λ x . (y x) ) q      (λ x . (a x) ) q

α=

α=

? ?
The var y is not passed in to the function yet 
it’s present in the ‘code’ so it’s global in that 
sense. Therefore we cannot rename it.



89

Lambda Calculus

Free and Bound Variables


Free variables are “unbound” or “global” in the sense that they are 
not in the scope of the λ function. Bound variables are those that are 
used in the expression and passed-in as a var/parameter.


(λ x . (y x) ) q


Only x is bound. The variable y is free. We can rename bound vars.


(λ x . (y x) ) q      (λ a . (y a) ) q


But we cannot rename bound vars to capture free vars.


(λ x . (y x) ) q      (λ y . (y y) ) q

α=

α=
The variable y was free and must remain so. This means that while 
we can rename the bound variable x, we cannot rename it to y 
because doing so would capture y and thus deprive y of its freedom.
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Free and Bound Variables and Alpha-equivalence


Not all α-renames are allowed. We are not allowed to “capture” free 
variables.


λx.E     λy.E  iff y ∉ FV(E)


We can α-rename x to y in λx.E iff y is not free in E.


Because… if there were a free y in E, we would be “capturing” it by 
renaming our parameter x as y. And we cannot capture free 
variables; we cannot deny them their freedom. It would be wrong.


Perform α-renames and conversions very carefully.

α=
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Lambda Calculus

Free and Bound Variables


	 	 	 	 	 	 	 Free Variables


	 	 	 	 	 	 	 FV(z) 	 	 	 = {z}


	 	 	 	 	 	 	 FV(E1  E2)		 = FV(E1) ∪ FV(E2)


	 	 	 	 	 	 	 FV(λz.E)	 	 = FV(E) ∖ {z}


λ expressions with no free variables are closed terms / Combinators.

Consider the I combinator:


     I ≡ λ x . x


      FV(I) ≡ FV (λ x . x) 

	 	 	 = FV(x) ∖ {x}


	 	  = {x} ∖ {x}

 = ∅
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Lambda Calculus

Combinators


We’ve seen the I combinator:


I ≡ λ x . x


It’s a closed-term λ expression, meaning it has no free variables.


Usage:

I whatever

whatever


There are other combinators.

β➛
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Lambda Calculus

Combinators


These are closed-term λ expressions, meaning they have no free 
variables. We can use I, K, and S like “macros” for their λ expressions.

I

K

K’

S

≡ λ x . x

≡ λ x y . x

≡ λ x y . y

≡ λ x y z . x z (y z) 
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Lambda Calculus

Combinators

I

K

K’

S

≡ λ x . x

≡ λ x y . x

≡ λ x y . y

≡ λ x y z . x z (y z) 

λ calculus is left-associative, so this 
is the application of (x z) to (y z)
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Lambda Calculus

Combinators


Usage:

≡ λ x . x

≡ λ x y . x

≡ λ x y . y

≡ λ x y z . x z (y z) 

I E


K E1 E2


K’ E1 E2


S E1 E2 E3

β➛

β➛

β➛

β➛

E


E1


E2


E1 E3 (E2 E3)

I

K

K’

S

≡Identity.


≡Take the first.


≡Take the second.


≡Substitute and apply.
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Lambda Calculus

Combinators


After some α-conversions:

≡ λ a . a

≡ λ b c . b

≡ λ b c . c

≡ λ e p z . e z (p z) 

I M


K M N


K’ M N


S M N L

β➛

β➛

β➛

β➛

M


M


N


M L (N L)

I

K

K’

S

≡Identity.


≡Take the first.


≡Take the second.


≡Substitute and apply.
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Lambda Calculus

Combinators


After more α-conversions:

≡ λ q . q

≡ λ u v . u

≡ λ u v . v

≡ λ a d c . a c (d c) 

I M


K M N


K’ M N


S M N L

β➛

β➛

β➛

β➛

M


M


N


M L (N L)

I

K

K’

S

≡Identity.


≡Take the first.


≡Take the second.


≡Substitute and apply.
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Lambda Calculus

Combinators


Example

≡ λ q . q

≡ λ u v . u

≡ λ u v . v

≡ λ a d c . a c (d c) 

I M


( λ x . x ) M

x [M/x]


Mβ➛

I

K

K’

S

≡Identity.


≡Take the first.


≡Take the second.


≡Substitute and apply.α-convert
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Lambda Calculus

Combinators


Example

≡ λ q . q

≡ λ u v . u

≡ λ u v . v

≡ λ a d c . a c (d c) 

K M N


( λ x y . x ) M N

[M/x] in (λ y . x)


(λ y . M) N

[N/y] in M


M

β➛

I

K

K’

S

≡Identity.


≡Take the first.


≡Take the second.


≡Substitute and apply.

β➛

How do we know there’s 
no y in M? Even if there 
were a y in M, it’s not the 
same as the y that’s the 
second parameter in the 
closed term/combinator K.

α-convert
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Lambda Calculus

Combinators


Example

≡ λ q . q

≡ λ u v . u

≡ λ u v . v

≡ λ a d c . a c (d c) 

K' M N


( λ x y . y ) M N

[M/x] in (λ y . y)


(λ y . y) N

[N/y] in y


N

β➛

I

K

K’

S

≡Identity.


≡Take the first.


≡Take the second.


≡Substitute and apply.

β➛

α-convert



101

Lambda Calculus

Combinators


Example

≡ λ q . q

≡ λ u v . u

≡ λ u v . v

≡ λ a d c . a c (d c) 

K' M N


( λ x y . y ) M N

[M/x] in (λ y . y)


(λ y . y) N

[N/y] in y


N

β➛

I

K

K’

S

≡Identity.


≡Take the first.


≡Take the second.


≡Substitute and apply.

β➛

α-convert

I
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Combinators


Example

≡ λ q . q

≡ λ u v . u

≡ λ u v . v

≡ λ a d c . a c (d c) 

S M N L


( λ e p z . e z ( p z ) ) M N L

λ p z . e z ( p z ) [M/e]

λ p z . M z ( p z ) N L

λ z . M z ( p z ) [N/p]

λ z . M z ( N z ) L

M z ( N z ) [L/z]


M L ( N L )

β➛

I

K

K’

S

≡Identity.


≡Take the first.


≡Take the second.


≡Substitute and apply.

β➛

α-convert

β➛
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Lambda Calculus

Combinators


We don’t need all of these.

In fact, all we need are S and K.


(Ponder that.)


All of computation can be expressed with two combinators: S and K.


It can get tricky, though.

For example, Y = S(K(S(SKK)(SKK)))(S(S(KS)K)(K(S(SKK)(SKK))))

≡ λ x . x

≡ λ x y . x

≡ λ x y . y

≡ λ x y z . x z (y z) 

I

K

K’

S

≡Identity.


≡Take the first.


≡Take the second.


≡Substitute and apply.
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Lambda Calculus

A full language?


Every programming language needs to provide 
mechanisms for 


• sequence 	 — executing commands one after the other

• alternation 	 — decision-making: if-then

• repetition 	 — looping, iteratively or recursively


So far all we have is sequence. We can apply things all we like by 
stringing together (sometimes very long) sequences of S and K (and 
other λ expressions too, but it all comes down to S and K).


We need alternation and repetition.


Sequence


Alternation


Repetition
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Lambda Calculus

Logic


We need logical values

• true

• false


and logical operators

• not

• and

• or


and logical properties

• not true = false

• not false = true

• true and true = true

• true and false = false

• true or true = true

• true or false = true


so we can build conditional statements for alternation.

• (Ec E1 E2) — “If Ec then E1 else E2”


Sequence


Alternation


Repetition
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Lambda Calculus

Logic


We need logical values

• true

• false


Can any of our combinators help? Perhaps K and K’ ?

true = K	 “take the first”

false = K’	 “take the second”


Consider a conditional statement: (Ec E1 E2) i.e., “If Ec then E1 else E2”
(true E1 E2)

≡ (K E1 E2)


≡ ( λ x y . x ) E1 E2

[E1/x] in (λ y . x)


(λ y . E1) E2

[E2/y] in E1


E1

(false E1 E2)

≡ (K’ E1 E2)


≡ ( λ x y . y ) E1 E2

[E1/x] in (λ y . y)


(λ y . y) E2

[E2/y] in y


E2

β➛

β➛

β➛

β➛



107

Lambda Calculus

Logic


We need logical values

✓ true

✓ false


and logical operators

• not

• and

• or


and logical properties

• not true = false

• not false = true

• true and true = true

• true and false = false

• true or true = true

• true or false = true


so we can build conditional statements.

✓ (Ec E1 E2) — “If Ec then E1 else E2”


Sequence


Alternation


Repetition



108

Lambda Calculus

Logic


We need logical operators

• not

• and

• or


not = ( λ t . t  false true)


Note: ( λ t . t  false true) is one λ-expression with one parameter, t, and three elements 
in the “code” to the right of the dot, t  false true. 


It’s not (I  false true), because  (λ t . t)  false true ≠ ( λ t . t  false true) .
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Lambda Calculus

Logic


We need logical operators

• not

• and

• or


not = ( λ t . t  false true)

not true

≡ ( λ t . t  false true) true


[true/t] in (t  false true)

(true false true)

≡ (K false true)


false

β➛

β➛ β➛

β➛

not false

≡ ( λ t . t  false true) false


[false/t] in (t  false true)

(false false true)

≡ (K’ false true)


true
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Logic


We need logical operators

✓ not

• and

• or


and = λ x y . ( (x y ) false )

true and false

rewrite as


(and true false)

≡ λ x y . ( (x y ) false )  true  false


[true/x] in λ y . ( (x y ) false )


λ y . ( (true y ) false ) false

[false/y] in ( (true y ) false )


( (true false) false )

true  false  false

≡ K  false  false


false

β➛

β➛

β➛

true and true

rewrite as


(and true true)

≡ λ x y . ( (x y ) false )  true  true


[true/x] in λ y . ( (x y ) false )


λ y . ( (true y ) false ) true

[true/y] in ( (true y ) false )


( (true true) false )

true  true  false

≡ K  true  false


true

β➛

β➛

β➛



false or false

rewrite as


(or  false  false)

≡ λ x y . ( (x true ) y)  false  false


[false/x] in λ y . ( (x true ) y)


λ y . ( (false true ) y) false

[false/y] in ( (false true ) y)


( (false true ) false)

false  true  false

≡ K’  true  false


false
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Logic


We need logical operators

✓ not

✓ and

• or


or = λ x y . ( (x true ) y )

true or false

rewrite as


(or  true  false)

≡ λ x y . ( (x true ) y)  true  false


[true/x] in λ y . ( (x true ) y)


λ y . ( (true true ) y) false

[false/y] in ( (true true ) y)


( (true true ) false)

true  true  false

≡ K  true  false


true

β➛

β➛

β➛

β➛

β➛

β➛
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Logic


We need logical values

✓ true

✓ false


and logical operators

✓ not

✓ and

✓ or


and logical properties

✓ not true = false

✓ not false = true

✓ true and true = true

✓ true and false = false

✓ true or true = true

✓ true or false = true


so we can build conditional statements.

✓ (Ec E1 E2) — “If Ec then E1 else E2”


We’re done here. 


All we need now is 
repetition through 
recursion.

Sequence


Alternation


Repetition
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Repetition Through Recursion


Consider a traditional recursive function: 


This function, f, calls itself. That's recursion. It can do that because 
it has a name. But what about anonymous functions? They are 
nameless. That’s a problem.

function f(x)

begin

   if x <= 0

      return 1

   else

      return x * f(x-1)

   end if

end

Sequence


Alternation


Repetition
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Repetition Through Recursion


In the 1940s and 1950s Haskell Curry worked on 
combinatorics and made several advances in the 
field. One of them was the Y combinator.


The Y combinator is a λ-calculus mechanism that allows a function 
to call itself. That's recursion. And that’s what we need.


Y = λ f. ( λ x . f ( x x )) ( λ x . f ( x x ))


Where have you seen this before?
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Repetition Through Recursion


In the 1940s and 1950s Haskell Curry worked on 
combinatorics and made several advances in the 
field. One of them was the Y combinator.


The Y combinator is a λ-calculus mechanism that allows a function 
to call itself. That's recursion. And that’s what we need.


Y = λ f. ( λ x . f ( x x )) ( λ x . f ( x x ))


Where have you seen this before?

On our web site.
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Repetition Through Recursion


The Y combinator is a λ-calculus mechanism that allows a function 
to call itself recursively.


Y = λ f. ( λ x . f ( x x )) ( λ x . f ( x x ))
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Repetition Through Recursion


The Y combinator is a λ-calculus mechanism that allows a function 
to call itself recursively.


Y = λ f. ( λ x . f ( x x )) ( λ x . f ( x x ))


Let’s try this by applying Y to some λ expression E.


(Y E)

≡ (λ f. ( λ x . f ( x x )) ( λ x . f ( x x ))) E

[E/f] in ( λ x . f ( x x )) ( λ x . f ( x x ))


( λ x . E ( x x )) ( λ x . E ( x x ))


We’re not done reducing, but let’s take a note of this

partially evaluated expression: 


(Y E)      ( λ x . E ( x x )) ( λ x . E ( x x ))

β➛

β➛
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Repetition Through Recursion


The Y combinator is a λ-calculus mechanism that allows a function 
to call itself recursively.


Y = λ f. ( λ x . f ( x x )) ( λ x . f ( x x ))


(Y E)

≡ (λ f. ( λ x . f ( x x )) ( λ x . f ( x x ))) E

[E/f] in ( λ x . f ( x x )) ( λ x . f ( x x ))


( λ x . E ( x x )) ( λ x . E ( x x ))
 (Y E)
β➛
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Repetition Through Recursion


The Y combinator is a λ-calculus mechanism that allows a function 
to call itself recursively.


Y = λ f. ( λ x . f ( x x )) ( λ x . f ( x x ))


(Y E)

≡ (λ f. ( λ x . f ( x x )) ( λ x . f ( x x ))) E

[E/f] in ( λ x . f ( x x )) ( λ x . f ( x x ))


( λ x . E ( x x )) ( λ x . E ( x x ))


Note that these two λ expressions are closed terms (contain no free variables) 

and both use a (bound) variable “x”. 


It will be easier to keep things straight if we α-convert one of them.


( λ x . E ( x x )) ( λ y . E ( y y ))α=

β➛ (Y E)
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Repetition Through Recursion


The Y combinator is a λ-calculus mechanism that allows a function 
to call itself recursively.


Y = λ f. ( λ x . f ( x x )) ( λ x . f ( x x ))


(Y E)

≡ (λ f. ( λ x . f ( x x )) ( λ x . f ( x x ))) E

[E/f] in ( λ x . f ( x x )) ( λ x . f ( x x ))


( λ x . E ( x x )) ( λ x . E ( x x ))

( λ x . E ( x x )) ( λ y . E ( y y ))

[(λ y . E ( y y ))/x] in E ( x x )


E ( (λ y . E ( y y )) (λ y . E ( y y )) )


We can α-convert again, for clarity.


E ( (λ x . E ( x x )) (λ x . E ( x x )) )

β➛

α=

α=

β➛

(Y E)
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Repetition Through Recursion


The Y combinator is a λ-calculus mechanism that allows a function 
to call itself recursively.


Y = λ f. ( λ x . f ( x x )) ( λ x . f ( x x ))


(Y E)

≡ (λ f. ( λ x . f ( x x )) ( λ x . f ( x x ))) E

[E/f] in ( λ x . f ( x x )) ( λ x . f ( x x ))


( λ x . E ( x x )) ( λ x . E ( x x ))

( λ x . E ( x x )) ( λ y . E ( y y ))

[(λ y . E ( y y ))/x] in E ( x x )


E ( (λ y . E ( y y )) (λ y . E ( y y )) )

E ( (λ x . E ( x x )) (λ x . E ( x x )) )


≡ E (Y E)

(Y E)
β➛

α=

α=
β➛
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Repetition Through Recursion


The Y combinator is a λ-calculus mechanism that allows a function 
to call itself recursively.


Y = λ f. ( λ x . f ( x x )) ( λ x . f ( x x ))


Y, applied to a λ expression E, beta-reduces to E (Y E)


(Y E)

E (Y E)


In other words, it recursively calls E with itself as a parameter.

Repeated applications result in a stack of recursive calls:


Y E       E(Y E)      E(E(Y E))      E(E(E(Y E)))  ・・・


β➛

β➛ β➛ β➛
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Complete and Universal


With the Y combinator allowing functions to call 
themselves recursively, we now have sequence, 
alternation, and repetition in the Lambda 
Calculus. It is a complete and universal model of 
computation.


From Leibniz, through Church and Turing, all the way to Curry and 
the functional languages of today, the Lambda Calculus is all we need.

Sequence


Alternation


Repetition


