
Operating	Systems	
CMPT	424		●		Fall	2024

OS iProject 3 © 2008-2112 Alan G. Labouseur, All Rights Reserved Page of 1 2

Goals To	build	on	the	functionality	of	iProject	Two	(all	of	which	is	required)	by	adding	the	ability	
to	execute	multiple	user	programs	at	the	same	time.

Func*onal
Requirements

Allow	the	user	to	load	three	programs	into	memory	at	once.	
Add	the	following	shell	commands:	
• clearmem	—	clear	all	memory	segments	
• runall	—	execute	all	programs	at	once	
• ps	—	display	the	PID	and	state	of	all	processes	
• kill <pid>	—	kill	one	process	
• killall	—	kill	all	process	
• quantum <int>	—	let	the	user	set	the	Round	Robin	quantum	
(measured	in	cpu	cycles)	

Display	the	Process	queue	and	its	contents	(including	state,	location,	
base,	limit,	segment,	priority,	and	current	quantum)	in	real	time.	
[challenge]	Track	and	display	turnaround	time	&	wait	time	for	each	process.

[5	points]	
[8	points]	

[5	points]	

[+10	points]

Implementa*on
Requirements

Store	multiple	programs	in	memory,	each	in	their	own	partition	/
segment,	allocated	by	the	client	OS	(which	obviously	needs	to	keep	track	
of	available	and	used	partitions/segments	in	the	MMU).	
Add	base	and	limit	registers	to	your	core	memory	access	code	in	the	
host	OS	and	to	your	PCB	objects	in	the	client	OS.	
Enforce	memory	partition	boundaries	at	all	times.	
Create	a	Resident	list	for	the	loaded	processes	and	a	Ready	queue	for	the	
running	processes.	These	can	be	combined	if	you	label	it	carefully.	
Instantiate	a	PCB	for	each	loaded	program	and	put	it	in	the	queue.	
Develop	a	CPU	scheduler	and	dispatcher	in	the	client	OS	using	Round	
Robin	scheduling	with	the	user-speci\ied	quantum	measured	in	CPU	
cycles	(default	=	6).	Be	sure	that	your	client	OS	controls	the	host	CPU	
with	the	CPU	scheduler	and	dispatcher	in	the	Kernel.	Log	all	scheduling	
events.	
Implement	context	switches	in	the	dispatcher	with	software	interrupts	
generated	by	the	scheduler.	Only	allow	context	switches	after	fully	
completed	CPU	instruction	cycles.	Be	sure	to	update	the	mode	bit	(if	
appropriate),	the	PCBs,	and	the	Process	queue.	
Detect	and	gracefully	handle	errors	like	invalid	op	codes,	missing	
operands	(if	you	can	detect	that),	and	most	importantly,	memory	out	of	
bounds	or	access	violation	attempts.	
Your	code	must	separate	structure	from	presentation,	be	professionally	
formatted,	use	and	demonstrate	best	practices,	and	and	be	free	of	
compiler	errors.	If	there	are	compiler	errors	it’s	-10	*	project	number.	
Continue	to	cite	everything	that’s	not	entirely	your	own	original	work.	
Commit	to	Git	early	and	often.	I	want	to	see	many	small	and	descriptive	
commits,	not	one	or	two	massive	ones.	In	fact,	I	will	not	accept	projects	
with	too	few	commits.

[5	points]	

[5	points]	

[5	points]	
[5	points]	

[5	points]	
[50	points]	

[5	points]	

[2	points]	

[−∞	if	not]

 iProject Three - 100 points

Operating	Systems	
CMPT	424		●		Fall	2024

OS iProject 3 © 2008-2112 Alan G. Labouseur, All Rights Reserved Page of 2 2

Hints • Do	not	reset	PIDs	as	they	are	used.	The	PID	value	should	always	increase.	
• The	program	counter	for	any	process	should	never	be	greater	than	FF	(255).	
• Remember	that	scheduling	is	done	via	context	switches	triggered	by	the	scheduler	
and	implemented	through	software	interrupts	that	are	handled	by	the	dispatcher.	

• Updating	your	Ready	Queue	only	on	a	scheduling	events	prevents	the	initial	state	
from	being	displayed	right	away.	This	is	bad.	

• Display	each	processes’	state	in	the	Process	Queue.	
• What	should	happen	if	the	user	tries	to	clearmem	while	processes	are	running?	
• Killing	a	process	currently	running	on	the	CPU	should	work	and	should	not	create	a	
zombie.	

• Speaking	of	killing,	GLaDOS	is	still	alive.	Do	not	break	her.

SubmiCng
Your Work

Update	GitHub	with	your	\inal	code	before	the	deadline	speci\ied	in	our	syllabus.	
Remember	to	let	me	know	which	branch	to	grade	in	the	readme.md	\ile.

