
Operating	Systems

CMPT	424		●		Fall	2024

OS	iProject 2	 © 2008-2112 Alan G. Labouseur, All Rights Reserved	 Page of 1 3

Goals To	build	on	the	functionality	from	iProject	One	(all	of	which	is	required)	by	adding	the	ability	
to	load	and	execute	one	user	program	in	256	bytes	of	memory	as	specified	by	the	6502a	op	
codes	documented	on	our	class	web	site.

Functional
Requirements

Modify	the	load	command	to	copy	the	6502a	machine	language	op	codes	
into	main	memory.

• Put	the	code	at	location	$0000	in	memory

• assign	a	Process	ID	(PID)

• create	a	Process	Control	Block	(PCB)

• return	the	PID	to	the	console	and	display	it.

Add	a	shell	command,	run <pid>,	to	run	a	program	already	in	memory.	
Note:	the	user	should	be	able	to	execute	many	load/run	cycles	in	sequence.

Execute	the	running	program	(including	displaying	memory,	CPU,	and	PCB	
status	as	well	as	any	output).	Be	sure	to	synchronize	the	CPU	execution	
cycles	with	clock	ticks.

As	the	programs	executes,	update	and	display	the	memory,	PCB,	and	CPU	
status	(program	counter,	instruction	reg,	accumulator,	X	reg,	Y	reg,	Z	flag)	
in	real	time.

Implement	line-wrap	in	the	CLI.	(This	is	not	longer	optional.)

[challenge]	Provide	the	ability	to	single-step	execution	(via	GUI	buttons).

[challenge]	Allow	the	user	to	break	the	current	program	with	Ctrl-C.

[5	points]

[3	points]

[15	points]

[5	points]

[2	points]

[+4	points]

[+2	points]

Implementation

Requirements

Develop	a	PCB	prototype	and	implement	it	in	the	client	OS.

Develop	a	memory	manager	and	implement	it	in	the	client	OS.

Develop	a	core	memory	prototype	and	implement	it	in	the	host	OS.

Develop	a	memory	accessor	prototype	and	implement	it	in	the	host	OS.

Develop	a	CPU	prototype	and	implement	it	in	the	host	OS.

Your	code	must	separate	structure	from	presentation,	be	professionally	
formatted,	use	and	demonstrate	best	practices,	and	and	be	free	of	compiler	
errors.	If	there	are	compiler	errors	it’s	-10	*	project	number	points	off.

Continue	to	preserve	GLaDOS	and	link	the	correct	testing	code.

Continue	to	cite	everything	that’s	not	entirely	your	own	original	work.

[4	points]

[4	points]

[4	points]

[4	points]

[4	points]

[−∞	if	not]

General

Hints

Consider	refactoring	the	host	OS	code	into	at	a	few	parts:	events,	interrupts,	and	services.

Implement	the	host	core	memory	and	CPU	as	a	separate	objects	and	separate	source	code	
files	within	the	host	directory.

Run	all	accesses	to	memory	through	your	host	memory	accessor	so	it	can	do	address	
translations	on	the	next	project.

Read	chapter	4	up	to	“Paging”	in	our	text.		It	presents	a	nice	look	at	main	memory	that	you	
might	find	helpful.

Remember	the	utility	of	comments	and	how	much	their	presence	and	quality	affect	my	
opinion	of	your	work.	Seriously.	Bad	code	style	will	cost	you	a	ton	of	points.

 iProject Two - 50 points

Operating	Systems

CMPT	424		●		Fall	2024

OS	iProject 2	 © 2008-2112 Alan G. Labouseur, All Rights Reserved	 Page of 2 3

Specific

Hints

• Continue	to	keep	.js	and	.ts	files	in	separate	directories.

• The	shutdown	functionality	must	operate	properly	even	when	a	program	is	running.

• The	memory	and	CPU	displays	must	update	in	real	time.	The	PCB	needs	to	update	only	
on	scheduling	events,	which	in	this	project	are	only	when	execution	begins	and	ends.

• Remember	that	you	must	continue	to	process	interrupts	while	the	CPU	is	executing.

• Always	separate	logic	and	structure	from	presentation.	Do	not	put	GUI	logic	in	your	
CPU	or	memory	routines.	Keep	the	GUI	stuff	in	control.ts	or	something	similar.

• As	I	warned	you	in	class,	it’s	easy	to	mix	up	base	10	and	base	16.	Double	check	all	of	that.

• You	are	almost	guaranteed	to	make	an	off-by-one	error	implementing	or	executing	the	
BNE	operation.	Embrace	it.	Then	fix	it.

• Never	use	magic	numbers.	Use	constants	for	everything	other	than	0,	1,	and	∞.

Very Specific

Hints

Follow	the	CPU	example	when	implementing	memory.

	In	the	main	directory:

Declare	globally...

//	Hardware	(host)

var	_CPU:	TSOS.CPU;

var	_Memory:	TSOS.Memory;

var	_MemoryAccessor:	TSOS.MemoryAccessor;

//	Software	(OS)

var	_MemoryManager:	any	=	null;

	

In	the	host/	directory,	put:

cpu.ts

memory.ts

memoryAccessor.ts

	

In	the	hardware	control	code	:	

_CPU	=	new	Cpu();	

_CPU.init();

_Memory	=	new	Memory();

_Memory.init();

_MemoryAccessor	=	new	MemoryAccessor();

	

In	the	OS/	directory,	put	:

memoryManager.ts

	

In	the	kernel	bootstrap	code:

_MemoryManager	=	new	MemoryManager();

Submitting

Your Work

Update	GitHub	with	your	current	code	and	let	me	know	that	it’s	ready	for	me	to	grade	(and	
which	branch	to	grade).

Operating	Systems

CMPT	424		●		Fall	2024

OS	iProject 2	 © 2008-2112 Alan G. Labouseur, All Rights Reserved	 Page of 3 3

