Compilers

CMPT 432
—-Lab9

Goals Manipulating Grammars

Notes It's good to have a nice grammar that’s easily (!) parsed in a top-down manner because it’s
LL(1). But not all grammars come to us in that way. Thus, we may have to be manipulative
and change them. Let’s practice.

Resources Crafting a Compiler
+ Read chapters 5.5 and 6.1-2
- Do exercises 5.5. If you're into it, take a shot at exercise 6.51. That’s quite interesting to

think about.

Dragon
- Read chapters 2.4.5, 4.5-6, and 4.8
« Do exercises 4.5.3 and 4.6.5

Submitting Commit a PDF of your work to your GitHub repository and I'll take a look at it.

LEFT FACTORING

We have seen that left recursion interferes with predictive parsing, and that
it can be eliminated. A similar problem occurs when two productions for the
same nonterminal start with the same symbols. For example:

S — if E then Selse S
S — if E then §

In such a case, we can left factor the grammar — that is, take the allowable
endings (else S and €) and make a new nonterminal X to stand for them:

S - ifEthen S X
X =
X —>else S

The resulting productions will not pose a problem for a predictive parser.
Although the grammar is still ambiguous — the parsing table has two entries
for the same slot — we can resolve the ambiguity by using the else S action.

from Modern Compiler Implementation in Java by Andrew Appel

Compilers Lab © 2004-2019 Alan G. Labouseur, All Rights Reserved Page 1 of 1



