

6502alan Machine Language Instruction Set

© 2008-2014 Alan G. Labouseur alan@Labouseur.com
All Rights Reserved www.Labouseur.com

We will use an instruction set based on the operation codes of the classic
6502 microprocessor. It was the heart of the Commodore PET, Apple //,
Atari 800, and many other ground-breaking computers, so we’re in good
company using it ourselves.

Test your code in the sample operating systems available on our class web
site. Also, there is an excellent virtual 6502 simulator, assembler, and
disassembler at http://e-tradition.net/bytes/6502. Feel free to use that tool
as well.

There are only three registers: X, Y, and the Accumulator.

Code examples follow the op code descriptions, below.

 Example Example
Description Op Code Mnemonic Assembly Disassembly
------------------------------------ ------- -------- ------------ -----------
Load the accumulator with a constant A9 LDA LDA #$07 A9 07
Load the accumulator from memory AD LDA LDA $0010 AD 10 00

Store the accumulator in memory 8D STA STA $0010 8D 10 00

Add with carry 6D ADC ADC $0010 6D 10 00
 Adds contents of an address to
 the contents of the accumulator and
 keeps the result in the accumulator

Load the X register with a constant A2 LDX LDX #$01 A2 01
Load the X register from memory AE LDX LDX $0010 AE 10 00

Load the Y register with a constant A0 LDY LDY #$04 A0 04
Load the Y register from memory AC LDY LDY $0010 AC 10 00

No Operation EA NOP EA EA

Break (which is really a system call) 00 BRK 00 00

Compare a byte in memory to the X reg EC CPX EC $0010 EC 10 00
 Sets the Z (zero) flag if equal

Branch n bytes if Z flag = 0 D0 BNE D0 $EF D0 EF

Increment the value of a byte EE INC EE $0021 EE 21 00

System Call FF SYS FF
 #$01 in X reg = print the integer stored in the Y register.
 #$02 in X reg = print the 00-terminated string stored at the address in
 the Y register.

6502alan Machine Language Instruction Set

© 2008-2014 Alan G. Labouseur alan@Labouseur.com
All Rights Reserved www.Labouseur.com

Example One

;
; Adds 3 and 4 and outputs result.
;
lda #$03 ; Load the accumulator (the "A register") with the constant 3.
sta $0000 ; Store A in location $0000; (These are hex numbers.)
lda #$04 ; A <-- 4
adc $0000 ; Add the value in location $0000 to A and keep the result in A.
sta $0001 ; Store A (our result) in location $0001.
ldx #$01 ; Load the X register with the value 1 (for syscall)
ldy $0001 ; Load the Y register with our result.
sys ; Make a system call to the OS (via a software interrupt)
brk ; Software interrupt for normal termination

Assemble this into 6502 machine code at http://www.e-tradition.net/bytes/6502/assembler.html. Use
only the assembly code. Comments will mess it up. You should get:

LDA #$03 A9 03
STA $0000 8D 00 00
LDA #$04 A9 04
ADC $0000 6D 00 00
STA $0001 8D 01 00 (Notice the low-order bytes are first (“little-endian”), so 0001 = address 01 00.)
LDX #$01 A2 01
LDY $0001 AC 01 00
SYS
BRK 00

Note that SYS does not cause an error (as the real 6502 did not have this), which is nice, but it also
does not generate an op code. This is fine in the sample operating systems found on our class web site,
but in order to make our code work in the e-tradition.net emulator, we’ll use the op code for NOP (no
operation) in place of SYS. That's EA. Inserting EA for SYS into the object code stream, we get:
A9 03 8D 00 00 A9 04 6D
00 00 8D 01 00 A2 01 AC
01 00 EA 00

Copy the object code and test it out at http://www.e-tradition.net/bytes/6502. You can see it run step
by step. Be sure to set the start address to 0000. Also, once you load memory, click “show memory”
to see the address-detailed display. You need to click “show memory” to see the updates as you step
through the user program.

Test your code there so you can concentrate on getting your generator right. There are lots of cool
things at that site, so check it all out.

6502alan Machine Language Instruction Set

© 2008-2014 Alan G. Labouseur alan@Labouseur.com
All Rights Reserved www.Labouseur.com

Example Two

In the first example we loaded the instructions beginning at location $0000. We also began storing
our values at $0000. This might be a bad idea, as we’ll write over our own code with data. Let's store
our data in locations elsewhere:

;
;Adds 3 and 4 and outputs result; doesn't overwrite our code in memory.
;
lda #$03 ; Load the accumulator (the "A register") with the constant 3.
sta $0018 ; Store A in location $0018; (These are hex numbers.)
lda #$04 ; A <-- #$04
adc $0018 ; Add the value in location $0018 to A and keep the result in A.
sta $0019 ; Store A (our result) in location $0019.
ldx #$01 ; Load the X register with the value 1 (Used by syscall to denote integer output.)
ldy $0019 ; Load the Y register with our result.
sys ; Make a system call to the OS (via a software interrupt)
brk ; Software interrupt for normal termination

Assembly and Op-codes:
LDA #$03 A9 03
STA $0018 8D 18 00
LDA #$04 A9 04
ADC $0018 6D 18 00
STA $0019 8D 19 00
LDX #$01 A2 01
LDY $0019 AC 19 00
SYS
BRK 00

Remembering to substitute EA (nop) for out SYScall when using the emulator, we get object code:
A9 03 8D 18 00 A9 04 6D
18 00 8D 19 00 A2 01 AC
19 00 EA 00

Copy the object code and test it out at http://www.e-tradition.net/bytes/6502.

6502alan Machine Language Instruction Set

© 2008-2014 Alan G. Labouseur alan@Labouseur.com
All Rights Reserved www.Labouseur.com

Example Three
; Prints 1, 2 and DONE.
lda #$3
sta $0041
lda #$1
sta $0040

loop ldy $0040
 ldx #$01
 sys

 inc $0040
 ldx $0040
 cpx $0041
 bne loop

lda #$44
sta $0042
lda #$4F
sta $0043
lda #$4E
sta $0044
lda #$45
sta $0045
lda #$00
sta $0046

ldx #$02
ldy #$42
sys

brk

Acc = 3
Mem[41] = 3
Acc = 1
Mem[40] = 1

Y = Mem[40]
X = 1
System Call

Mem[40]++
X = Mem[40]
Z bit = (x == Mem[41])
if z == 0 goto loop

Acc = $44 (“D”)
Mem[42] = $44
Acc = $4F (“O”)
Mem[43] = $4F
Acc = $4E (“N”)
Mem[44] = $4E
Acc = $45 (“E”)
Mem[45] = $45
Acc = $00 (null)
Mem[46] = $00

X = 2
Y = $42 (address)
System call

Break

0000 LDA #$03 A9 03
0002 STA $0041 8D 41 00
0005 LDA #$01 A9 01
0007 STA $0040 8D 40 00

000A LOOP LDY $0040 AC 40 00
000D LDX #$01 A2 01
000F SYS FF

0010 INC $0040 EE 40 00
0013 LDX $0040 AE 40 00
0016 CPX $0041 EC 41 00
0019 BNE LOOP D0 EF

001B LDA #$44 A9 44
001D STA $0042 8D 42 00
0020 LDA #$4F A9 4F
0022 STA $0043 8D 43 00
0025 LDA #$4E A9 4E
0027 STA $0044 8D 44 00
002A LDA #$45 A9 45
002C STA $0045 8D 45 00
002F LDA #$00 A9 00
0031 STA $0046 8D 46 00

0034 LDX #$02 A2 02
0036 LDY #$42 A0 42
0038 SYS FF

0039 BRK 00

Remember, SYS does not cause an error (as the real 6502 did not have this), which is nice, but it also
does not generate an op code. In order to make our code work in the e-tradition.net emulator, we use
the op code for NOP in place of SYS. Thus the EA’s in the op code stream below.

A9 03 8D 41 00 A9 01 8D 40 00 AC 40 00 A2 01 EA EE 40 00 AE 40 00 EC 41 00 D0
EF A9 44 8D 42 00 A9 4F 8D 43 00 A9 4E 8D 44 00 A9 45 8D 45 00 A9 00 8D 46 00
A2 02 A0 42 EA 00

In the OS simulations, the CPU object will generate a software interrupt when it sees the SYS op
code (FF). Be sure that you generate FF for SYStem calls. Use the EA only for testing at
http://www.e-tradition.net/bytes/6502.

